Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794612

ABSTRACT

Lattice structures have become an innovative solution for the improvement of part design, as they are able to substitute solid regions, maintain mechanical capabilities, and reduce material usage; however, dimensional quality control of these geometries is challenging. X-ray computed tomography (XCT) is the most suitable non-destructive metrological technique as it is capable of characterizing internal features and hidden elements. Uncertainty estimation of XCT is still in development, and studies typically use high-resolution calibrated devices such as focal variation microscopes (FVMs) as a reference, focusing on certain parts of the lattice but not the whole structure. In this paper, an estimation of the accuracy of XCT evaluation of a complete lattice structure in comparison to a higher-resolution reference device (FVM) is presented. Experimental measurements are taken on ad hoc designed test objects manufactured in polyamide 12 (PA12) using selective laser sintering (SLS), optimized for the evaluation on both instruments using different cubic-based lattice typologies. The results confirm higher precision on XCT evaluation in both qualitative and quantitative analysis. Even with a lower resolution, XCT is able to characterize details of the surface such as re-entrant features; as well, standard deviations and uncertainties in strut diameter evaluation remain more stable in all cells in XCT, identifying on the other hand reconstruction problems on FVM measurements. Moreover, it is shown that, using XCT, no additional evaluation errors were found in inner cells, suggesting that the measurement of external elements could be representative of the whole structure for metrological purposes.

2.
Sensors (Basel) ; 24(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38733026

ABSTRACT

In this paper, a six-degree-of-freedom analog tactile probe with a new, simple, and robust mechanical design is presented. Its design is based on the use of one elastomeric ring that supports the stylus carrier and allows its movement inside a cubic measuring range of ±3 mm. The position of the probe tip is determined by three low-cost, noncontact, 2D PSD (position-sensitive detector) sensors, facilitating a wider application of this probe to different measuring systems compared to commercial ones. However, several software corrections, regarding the size and orientation of the three LED light beams, must be carried out when using these 2D sensors for this application due to the lack of additional focusing or collimating lenses and the very wide measuring range. The development process, simulation results, correction models, experimental tests, and calibration of this probe are presented. The results demonstrate high repeatability along the X-, Y-, and Z-axes (2.0 µm, 2.0 µm, and 2.1 µm, respectively) and overall accuracies of 6.7 µm, 7.0 µm, and 8.0 µm, respectively, which could be minimized by more complex correction models.

3.
3D Print Addit Manuf ; 11(1): 287-298, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389673

ABSTRACT

The cost impact of implementing additive manufacturing (AM) in the fabrication process is nowadays an issue. The scope of this research is to establish a cost model framework that can predict the cost of a piece in a low to medium batch considering fused deposition modeling (FDM) printing parameters. Every enterprise wants to increase its internal capabilities for tools, prototypes, and the production of pieces for maintenance purposes. FDM is an AM technology increasingly used in aerospace, automotive, and many other sectors. The research methodology consists of developing a cost model based on the extrusion-type AM process for any given machine characteristics and comparing the cost per piece based on diverse lot sizes and raw materials. Two test cases were simulated to show the usefulness of the cost model, one with a conventional polymer material (acrylonitrile butadiene styrene) and another with a high-performance material (polyetheretherketone); materials with very different costs, machine technical requirements, and energy consumption. The framework could be used to predict the best machine size and material type that could be suitable for a certain situation. The strength of our approach lies in the energy cost calculus, which is dependent on machine capabilities and size.

4.
Materials (Basel) ; 13(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322289

ABSTRACT

X-ray computed tomography is one of the most promising measurement techniques for the dimensional evaluation of industrial components. However, the inherent complexity of this technology also involves important challenges. One of them is to develop surface determination algorithms capable of providing measurement results with better accuracy in any situation-for example, for single and multi-material parts, inner and outer geometries, with and without image artefacts, etc.-and reducing user influence. The surface determination is particularly complex in the case of multi-material parts, especially when they are separated by small air gaps. In previous works, two gradient-based algorithms were presented, that showed less measurement variability throughout the whole part, and reduced the computational cost and operator influence compared to threshold-based algorithms. This work focuses on the evaluation of the performance of these algorithms when used in a scenario so complex that parts of it are made of one or more materials (metal-metal and polymer-metal) with gaps inside. For this purpose, a set of multi-material reference standards is used. The presented gradient-based algorithms show measurement errors comparable to commercial threshold-based algorithms, but with the capability of obtaining accurate measurements in smaller gaps, apart from reducing the user influence on the measurement process.

5.
Materials (Basel) ; 13(2)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936849

ABSTRACT

Machine tools are verified and compensated periodically to improve accuracy. The main aim of machine tool verification is to reduce the influence of quasi-static errors, especially geometric errors. As these errors show systematic behavior, their influence can be compensated. However, verification itself is influenced by random uncertainty sources that are usually not considered but affect the results. Within these uncertainty sources, laser tracker measurement noise is a random error that should not be ignored and can be reduced through adequate location of the equipment. This paper presents an algorithm able to analyse the influence of laser tracker location based on nonlinear optimisation, taking into consideration its specifications and machine tool characteristics. The developed algorithm uses the Monte Carlo method to provide a zone around the machine tool where the measurement system should be located in order to improve verification results. To achieve this aim, different parameters were defined, such as the number of tests carried out, and the number and distribution of points, and their influence on the error due to the laser tracker location analysed.

6.
Sensors (Basel) ; 19(13)2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31248043

ABSTRACT

Volumetric verification is based on the machine tool (MT) kinematic model, along with its geometric errors. Although users often ignore the uncertainty of verification, the use of the MT as a traceable measurement system in the manufacturing process has increased the need for professionals to be aware of it. This paper presents an improvement in the MT kinematic model, introducing in it the influence of verification uncertainty sources. These sources have been classified into four groups: the MT, the measurement system itself, the measurement strategy, and the optimization strategy. As the developed model exhibits non-linear behavior, the Monte Carlo method was used to determine the influence of the measurement system on verification uncertainty using synthetic tests. In this manner, an improved estimation of the MT uncertainty can be obtained. Therefore, if the MT is used as a traceable measurement system, its accuracy should not be higher than the laser tracker (LT) verification influence. It hence shows the importance of LT influence.

7.
Sensors (Basel) ; 16(1)2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26761014

ABSTRACT

Both an accurate machine design and an adequate metrology loop definition are critical factors when precision positioning represents a key issue for the final system performance. This article discusses the error budget methodology as an advantageous technique to improve the measurement accuracy of a 2D-long range stage during its design phase. The nanopositioning platform NanoPla is here presented. Its specifications, e.g., XY-travel range of 50 mm × 50 mm and sub-micrometric accuracy; and some novel designed solutions, e.g., a three-layer and two-stage architecture are described. Once defined the prototype, an error analysis is performed to propose improvement design features. Then, the metrology loop of the system is mathematically modelled to define the propagation of the different sources. Several simplifications and design hypothesis are justified and validated, including the assumption of rigid body behavior, which is demonstrated after a finite element analysis verification. The different error sources and their estimated contributions are enumerated in order to conclude with the final error values obtained from the error budget. The measurement deviations obtained demonstrate the important influence of the working environmental conditions, the flatness error of the plane mirror reflectors and the accurate manufacture and assembly of the components forming the metrological loop. Thus, a temperature control of ±0.1 °C results in an acceptable maximum positioning error for the developed NanoPla stage, i.e., 41 nm, 36 nm and 48 nm in X-, Y- and Z-axis, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...