Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3490-3493, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946630

ABSTRACT

The objective of this work is the identification of significant variations of morphological parameters of the photoplethysmographic (PPG) signal when the subjects are exposed to an increase in atmospheric pressure. To achieve this goal, the PPG signal of 26 subjects, exposed to a hyperbaric environment whose pressure increases up to 5 atm, has been recorded. From this record, segments of 4 minutes have been processed at 1 atm, 3 atm and 5 atm, both in the descending (D) and ascending (A) periods of the immersion. In total, four states (3D, 5, 3A and 1A) normalized to the basal state (1D) have been considered. In these segments, six morphological parameters of the PPG signal were studied. The width, the amplitude, the widths of the anacrotic and catacrotic phases, and the upward and downward slopes of each PPG pulse were extracted. The results showed significant increases in the three parameters related to the pulse width. This increase is significant in the four states analysed for the anacrotic phase width. Furthermore, a significant decrease in the amplitude and in both slopes (in the states 1A) was observed. These results show that the PPG width responds rapidly to the increase in pressure, indicating an activation of the sympathetic system, while amplitude and pulse slopes are decreased when the subjects are exposed to the hyperbaric environment for a considerable period of time.


Subject(s)
Air Pressure , Photoplethysmography , Signal Processing, Computer-Assisted , Adult , Blood Pressure , Female , Heart Rate , Humans , Male , Young Adult
2.
IEEE J Biomed Health Inform ; 23(5): 1940-1951, 2019 09.
Article in English | MEDLINE | ID: mdl-30452382

ABSTRACT

Our long-term goal is the development of an automatic identifier of attentional states. In order to accomplish it, we should first be able to identify different states based on physiological signals. So, the first aim of this paper is to identify the most appropriate features to detect a subject's high performance state. For that, a database of electrocardiographic (ECG) and photoplethysmographic (PPG) signals is recorded in two unequivocally defined states (rest and attention task) from up to 50 subjects as a sample of the population. Time and frequency parameters of heart/pulse rate variability have been computed from the ECG/PPG signals, respectively. Additionally, the respiratory rate has been estimated from both signals and also six morphological parameters from PPG. In total, 26 features are obtained for each subject. They provide information about the autonomic nervous system and the physiological response of the subject to an attention demand task. Results show an increase of sympathetic activation when the subjects perform the attention test. The amplitude and width of the PPG pulse were more sensitive than the classical sympathetic markers ([Formula: see text] and [Formula: see text]) for identifying this attentional state. State classification accuracy reaches a mean of [Formula: see text], a maximum of [Formula: see text], and a minimum of 85%, in the 100 classifications made by only selecting four parameters extracted from the PPG signal (pulse amplitude, pulsewidth, pulse downward slope, and mean pulse rate). These results suggest that attentional states could be identified by PPG.


Subject(s)
Attention/physiology , Heart Rate/physiology , Photoplethysmography/methods , Rest/physiology , Signal Processing, Computer-Assisted , Adult , Electrocardiography/methods , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...