Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 15(11): 1402-1409, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36683551

ABSTRACT

Recently, non-steroidal anti-inflammatory drugs (NSAIDs) have been increasingly used in humans and animals. Despite being effective against a wide variety of diseases, they pose a threat to aquatic environments. In the current work, a highly efficient, selective, and sensitive micellar electrokinetic chromatography (MEKC) method was developed for the determination of five NSAIDs in environmental water samples. The optimal separation BGE was 15 mM borate buffer (pH 9), 90 mM SDS, and 10% methanol at a separation voltage of 15 kV and a hydrodynamic injection of 10 mbar for 5 s. The results presented in this study provide a higher number of theoretical plates N > 780 000 with excellent RSDs of 0.1-1.5% and great sensitivity (3-15 µg L-1) for NSAIDs. To validate this method, the solid phase extraction method was optimized using two different cartridges (C18 and Oasis HLB); the results showed excellent recoveries (73-111.6%) for all the analytes in wastewater samples.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary , Wastewater , Humans , Animals , Chromatography, Micellar Electrokinetic Capillary/methods , Solid Phase Extraction , Anti-Inflammatory Agents, Non-Steroidal
2.
Electrophoresis ; 43(20): 1944-1952, 2022 10.
Article in English | MEDLINE | ID: mdl-35946549

ABSTRACT

A simple, rapid method using CE and microchip electrophoresis with C4 D has been developed for the separation of four nonsteroidal anti-inflammatory drugs (NSAIDs) in the environmental sample. The investigated compounds were ibuprofen (IB), ketoprofen (KET), acetylsalicylic acid (ASA), and diclofenac sodium (DIC). In the present study, we applied for the first time microchip electrophoresis with C4 D detection to the separation and detection of ASA, IB, DIC, and KET in the wastewater matrix. Under optimum conditions, the four NSAIDs compounds could be well separated in less than 1 min in a BGE composed of 20 mM His/15 mM Tris, pH 8.6, 2 mM hydroxypropyl-beta-cyclodextrin, and 10% methanol (v/v) at a separation voltage of 1000-1200 V. The proposed method showed excellent repeatability, good sensitivity (LODs ranging between 0.156 and 0.6 mg/L), low cost, high sample throughputs, portable instrumentation for mobile deployment, and extremely lower reagent and sample consumption. The developed method was applied to the analysis of pharmaceuticals in wastewater samples with satisfactory recoveries ranging from 62.5% to 118%.


Subject(s)
Electrophoresis, Microchip , Ketoprofen , 2-Hydroxypropyl-beta-cyclodextrin , Anti-Inflammatory Agents , Anti-Inflammatory Agents, Non-Steroidal , Aspirin , Diclofenac , Electric Conductivity , Electrophoresis, Capillary/methods , Electrophoresis, Microchip/methods , Ibuprofen , Methanol , Pharmaceutical Preparations , Wastewater
3.
Sensors (Basel) ; 22(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35890930

ABSTRACT

In this study, an in situ synthesis approach based on electrochemical reduction and ion exchange was employed to detect carbaryl species using a disposable, screen-printed carbon electrode fabricated with nanocomposite materials. Reduced graphene oxide (rGO) was used to create a larger electrode surface and more active sites. Gold nanoparticles (AuNPs,) were incorporated to accelerate electron transfer and enhance sensitivity. A cation exchange Nafion polymer was used to enable the adhesion of rGO and AuNPs to the electrode surface and speed up ion exchange. Cyclic voltammetry (CV), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), electrical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were performed to study the electrochemical and physical properties of the modified sensor. In the presence of differential pulse voltammetry (DPV), an rGO/AuNP/Nafion-modified electrode was effectively used to measure the carbaryl concentration in river and tap water samples. The developed sensor exhibited superior electrochemical performance in terms of reproducibility, stability, efficiency and selectivity for carbaryl detection with a detection limit of 0.2 µM and a concentration range between 0.5µM and 250 µM. The proposed approach was compared to capillary electrophoresis with ultraviolet detection (CE-UV).


Subject(s)
Graphite , Metal Nanoparticles , Carbaryl , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Reproducibility of Results , Water
4.
Electrophoresis ; 43(7-8): 857-864, 2022 04.
Article in English | MEDLINE | ID: mdl-34936709

ABSTRACT

Paracetamol (PAC) is one of the most extensively used analgesics and antipyretic drugs to treat mild and moderate pain. P-aminophenol (PAP), the main hydrolytic degradation product of PAC, can be found in environmental water. Recently, CE has been developed for the detection of a wide variety of chemical substances. The purpose of this study is to develop a simple and fast method for the detection and separation of PAC and its main hydrolysis product PAP using CE and microchip electrophoresis with capacitively coupled contactless conductivity detection. The determination of these compounds using microchip electrophoresis with capacitively coupled contactless conductivity detection is being reported for the first time. The separation was run for all analytes using a BGE (20 mM ß-alanine, pH 11) containing 14% (v/v) methanol. The RSDs obtained for migration time were less than 4%, and RSDs obtained for peak area were less than 7%. The detection limits (S/N = 3) that were achieved ranged from 0.3 to 0.6 mg/L without sample preconcentration. The presented method showed rapid analysis time (less than 1 min), high efficiency and precision, low cost, and a significant decrease in the consumption of reagents. The microchip system has proved to be an excellent analytical technique for fast and reliable environmental applications.


Subject(s)
Electrophoresis, Microchip , Acetaminophen , Aminophenols , Electric Conductivity , Electrophoresis, Capillary/methods , Electrophoresis, Microchip/methods , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...