Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38067085

ABSTRACT

Nucleotides, short-chain fructooligosaccharides (scFOS), xylooligosaccharides (XOS), ß-carotene and vitamin E are reported to enhance immune function; however, the evidence of this in cats is limited. The aim of this study was to determine the immunomodulatory effects of these ingredients in kittens. Forty domestic short hair kittens were designated in litters to control or test diet for 28 weeks. Test diet was fortified with 0.33 g nucleotides, 0.45 g scFOS, 0.3 g XOS, 0.7 mg ß-carotene and 66.5 mg vitamin E per 100 g diet. Kittens were vaccinated against feline parvovirus (FPV) and herpesvirus (FHV) at 10, 14 and 18 weeks. Kittens remained healthy, with no measured evidence of adverse health. Serum FPV and FHV antibody titres were significantly (p < 0.05) higher in the test diet group at week 23 and 27, respectively. A significantly (p < 0.05) higher proportion of test diet group kittens demonstrated an adequate response (four-fold titre increase) to FHV vaccination and a significantly (p < 0.05) higher proportion reached a protective antibody titre for FHV. Serum IgM was significantly (p < 0.05) higher in the test diet group. The test diet group demonstrated a stronger humoral immune response to vaccination, suggesting the diet supports immune defence, enabling a greater response to immune challenges.

2.
Theranostics ; 8(16): 4509-4519, 2018.
Article in English | MEDLINE | ID: mdl-30214635

ABSTRACT

An increased risk of cardiovascular death in Cytomegalovirus (CMV)-infected individuals remains unexplained, although it might partly result from the fact that CMV infection is closely associated with the accumulation of CD28null T-cells, in particular CD28null CD4 T-cells. These cells can directly damage endothelium and precipitate cardiovascular events. However, the current paradigm holds that the accumulation of CD28null T-cells is a normal consequence of aging, whereas the link between these T-cell populations and CMV infection is explained by the increased prevalence of this infection in older people. Resolving whether CMV infection or aging triggers CD28null T-cell expansions is of critical importance because, unlike aging, CMV infection can be treated. Methods: We used multi-color flow-cytometry, antigen-specific activation assays, and HLA-typing to dissect the contributions of CMV infection and aging to the accumulation of CD28null CD4 and CD8 T-cells in CMV+ and CMV- individuals aged 19 to 94 years. Linear/logistic regression was used to test the effect of sex, age, CMV infection, and HLA-type on CD28null T-cell frequencies. Results: The median frequencies of CD28null CD4 T-cells and CD28null CD8 T-cells were >12-fold (p=0.000) but only approximately 2-fold higher (p=0.000), respectively, in CMV+ (n=136) compared with CMV- individuals (n=106). The effect of CMV infection on these T-cell subsets was confirmed by linear regression. Unexpectedly, aging contributed only marginally to an increase in CD28null T-cell frequencies, and only in CMV+ individuals. Interestingly, the presence of HLA-DRB1*0301 led to an approximately 9-fold reduction of the risk of having CD28null CD4 T-cell expansions (OR=0.108, p=0.003). Over 75% of CMV-reactive CD4 T-cells were CD28null. Conclusion: CMV infection and HLA type are major risk factors for CD28null CD4 T-cell-associated cardiovascular pathology. Increased numbers of CD28null CD8 T-cells are also associated with CMV infection, but to a lesser extent. Aging, however, makes only a negligible contribution to the expansion of these T-cell subsets, and only in the presence of CMV infection. Our results open up new avenues for risk assessment, prevention, and treatment.


Subject(s)
Aging/pathology , CD28 Antigens/analysis , CD4-Positive T-Lymphocytes/chemistry , CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/complications , Heart Failure/epidemiology , Heart Failure/physiopathology , Adult , Aged , Aged, 80 and over , Cytomegalovirus Infections/pathology , Female , Flow Cytometry , Histocompatibility Testing , Humans , Male , Middle Aged , Prevalence , Risk Factors , Young Adult
3.
Mar Genomics ; 24 Pt 1: 55-68, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26122835

ABSTRACT

Cloning and characterization of IgT heavy chain genes were performed in the Antarctic Notothenioid teleost Trematomus bernacchii and in a non-Antarctic Notothenioid species, Bovichtus diacanthus, belonging to a phyletically basal lineage of Notothenioids. Compared to IgT from other non-Antarctic teleost species, including B. diacanthus, T. bernacchii IgT lacked most of the second constant domain but maintained only a few amino acid residues, which could be aligned to B. diacanthus CH2 domain. By analyzing several cDNA clones from a single specimen, three differently sized IgT transcript variants, named Long, Short and Shortest, were identified. Genomic analysis of T. bernacchii and B. diacanthus IgH loci revealed that, in the case of T. bernacchii, within the intron between the exons coding for the entire first and second constant domains a reminiscence of the ancestral second exon was present. The Long and Short variants were found to be encoded by indel alleles, whereas the Shortest variant was generated by alternative splicing that led to the CH2 exonic remnant skipping. Through comparison between genomic and cDNA sequences we hypothesized the presence of three different copies of the IgT heavy chain gene, one of which being considered the functional gene since the corresponding transcripts were identified. Moreover, either Long or Short exonic variants were found to be used in IgT heavy chain membrane form in an unbiased manner, as seen for the secretory form. Phylogenetic analysis was performed on the constant region from all teleost IgT available to date, including IgT from another Antarctic Notothenioid species, Notothenia coriiceps, identified by searching the transcriptome. The loss of almost an entire domain together with the conservation of some amino acids such as proline, glycine and cysteine in the CH2 domain remnant, could be interpreted as another distinctive feature of the Antarctic fish genome evolution, providing also new insights into the structural variation of teleost immunoglobulin genes.


Subject(s)
Biological Evolution , Fishes/genetics , Fishes/metabolism , Gene Expression Regulation/immunology , Immunoglobulins/genetics , Immunoglobulins/metabolism , Amino Acid Sequence , Animals , Antarctic Regions , Base Sequence , DNA, Complementary/genetics , Fish Proteins , Genomics , Immunoglobulin Heavy Chains/genetics , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...