Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell Rep Med ; 5(4): 101483, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38579727

ABSTRACT

Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32+ nanoprotrusions deposit distinct plasma membrane patches onto target T cells. Transferred receptors confer cell migration and adhesion properties, and macrophage-derived membrane patches render resting CD4 T cells susceptible to infection by serving as hotspots for HIV-1 binding. Antibodies that recognize T cell epitopes enhance CD32-mediated trogocytosis. Such autoreactive anti-HIV-1 envelope antibodies can be found in the blood of HIV-1 patients and, consistently, the percentage of CD32+ CD4 T cells is increased in their blood. This CD32-mediated, antigen-independent cell communication mode transiently expands the receptor repertoire and functionality of immune cells. HIV-1 hijacks this mechanism by triggering the generation of trogocytosis-promoting autoantibodies to gain access to immune cells critical to its persistence.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , CD4-Positive T-Lymphocytes , Receptors, IgG/metabolism , Autoantibodies/metabolism , Trogocytosis
2.
PNAS Nexus ; 1(2)2022 May.
Article in English | MEDLINE | ID: mdl-36382127

ABSTRACT

Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1.

3.
Front Microbiol ; 13: 955603, 2022.
Article in English | MEDLINE | ID: mdl-35935191

ABSTRACT

Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.

4.
Angew Chem Int Ed Engl ; 61(38): e202204556, 2022 09 19.
Article in English | MEDLINE | ID: mdl-35802496

ABSTRACT

The emergence of more transmissible or aggressive variants of SARS-CoV-2 requires the development of antiviral medication that is quickly adjustable to evolving viral escape mutations. Here we report the synthesis of chemically stabilized small interfering RNA (siRNA) against SARS-CoV-2. The siRNA can be further modified with receptor ligands such as peptides using CuI -catalysed click-chemistry. We demonstrate that optimized siRNAs can reduce viral loads and virus-induced cytotoxicity by up to five orders of magnitude in cell lines challenged with SARS-CoV-2. Furthermore, we show that an ACE2-binding peptide-conjugated siRNA is able to reduce virus replication and virus-induced apoptosis in 3D mucociliary lung microtissues. The adjustment of the siRNA sequence allows a rapid adaptation of their antiviral activity against different variants of concern. The ability to conjugate the siRNA via click-chemistry to receptor ligands facilitates the construction of targeted siRNAs for a flexible antiviral defence strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Ligands , RNA, Small Interfering/pharmacology , SARS-CoV-2/genetics , Virus Replication
5.
Cell Rep ; 38(3): 110279, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045303

ABSTRACT

Murine leukemia virus (MLV)-presenting cells form stable intercellular contacts with target cells during infection of lymphoid tissue, indicating a role of cell-cell contacts in retrovirus dissemination. Whether host cell adhesion proteins are required for retrovirus spread in vivo remains unknown. Here, we demonstrate that the lymphocyte-function-associated-antigen-1 (LFA1) and its ligand intercellular-adhesion-molecule-1 (ICAM1) are important for cell-contact-dependent transmission of MLV between leukocytes. Infection experiments in LFA1- and ICAM1-deficient mice demonstrate a defect in MLV spread within lymph nodes. Co-culture of primary leukocytes reveals a specific requirement for ICAM1 on donor cells and LFA1 on target cells for cell-contact-dependent spread through trans- and cis-infection. Importantly, adoptive transfer experiments combined with a newly established MLV-fusion assay confirm that the directed LFA1-ICAM1 interaction is important for retrovirus fusion and transmission in vivo. Taken together, our data provide insights on how retroviruses exploit host proteins and the biology of cell-cell interactions for dissemination.


Subject(s)
Intercellular Adhesion Molecule-1/metabolism , Leukemia Virus, Murine/pathogenicity , Leukemia, Experimental/virology , Lymphocyte Function-Associated Antigen-1/metabolism , Retroviridae Infections/virology , Animals , Host-Pathogen Interactions/physiology , Lymphocytes/virology , Macrophages/virology , Mice , Mice, Inbred C57BL , Retroviridae Infections/transmission , Tumor Virus Infections/transmission , Tumor Virus Infections/virology
6.
Nat Med ; 28(3): 496-503, 2022 03.
Article in English | MEDLINE | ID: mdl-35090165

ABSTRACT

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
7.
Infection ; 50(2): 381-394, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34379308

ABSTRACT

PURPOSE: To determine risk factors for coronavirus disease 2019 (COVID-19) in healthcare workers (HCWs), characterize symptoms, and evaluate preventive measures against SARS-CoV-2 spread in hospitals. METHODS: In a cross-sectional study conducted between May 27 and August 12, 2020, after the first wave of the COVID-19 pandemic, we obtained serological, epidemiological, occupational as well as COVID-19-related data at a quaternary care, multicenter hospital in Munich, Germany. RESULTS: 7554 HCWs participated, 2.2% of whom tested positive for anti-SARS-CoV-2 antibodies. Multivariate analysis revealed increased COVID-19 risk for nurses (3.1% seropositivity, 95% CI 2.5-3.9%, p = 0.012), staff working on COVID-19 units (4.6% seropositivity, 95% CI 3.2-6.5%, p = 0.032), males (2.4% seropositivity, 95% CI 1.8-3.2%, p = 0.019), and HCWs reporting high-risk exposures to infected patients (5.5% seropositivity, 95% CI 4.0-7.5%, p = 0.0022) or outside of work (12.0% seropositivity, 95% CI 8.0-17.4%, p < 0.0001). Smoking was a protective factor (1.1% seropositivity, 95% CI 0.7-1.8% p = 0.00018) and the symptom taste disorder was strongly associated with COVID-19 (29.8% seropositivity, 95% CI 24.3-35.8%, p < 0.0001). An unbiased decision tree identified subgroups with different risk profiles. Working from home as a preventive measure did not protect against SARS-CoV-2 infection. A PCR-testing strategy focused on symptoms and high-risk exposures detected all larger COVID-19 outbreaks. CONCLUSION: Awareness of the identified COVID-19 risk factors and successful surveillance strategies are key to protecting HCWs against SARS-CoV-2, especially in settings with limited vaccination capacities or reduced vaccine efficacy.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Health Personnel , Humans , Male , Pandemics/prevention & control , Risk Factors , SARS-CoV-2
8.
Nat Methods ; 19(1): 81-89, 2022 01.
Article in English | MEDLINE | ID: mdl-34949807

ABSTRACT

CD4+ T cells are central mediators of adaptive and innate immune responses and constitute a major reservoir for human immunodeficiency virus (HIV) in vivo. Detailed investigations of resting human CD4+ T cells have been precluded by the absence of efficient approaches for genetic manipulation limiting our understanding of HIV replication and restricting efforts to find a cure. Here we report a method for rapid, efficient, activation-neutral gene editing of resting, polyclonal human CD4+ T cells using optimized cell cultivation and nucleofection conditions of Cas9-guide RNA ribonucleoprotein complexes. Up to six genes, including HIV dependency and restriction factors, were knocked out individually or simultaneously and functionally characterized. Moreover, we demonstrate the knock in of double-stranded DNA donor templates into different endogenous loci, enabling the study of the physiological interplay of cellular and viral components at single-cell resolution. Together, this technique allows improved molecular and functional characterizations of HIV biology and general immune functions in resting CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , CRISPR-Cas Systems/genetics , Gene Editing/methods , HIV Infections/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/virology , CRISPR-Associated Protein 9/genetics , Cell Movement/genetics , Cells, Cultured , DNA , Gene Knockout Techniques , HIV Infections/metabolism , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , RNA, Guide, Kinetoplastida , SAM Domain and HD Domain-Containing Protein 1/genetics , Transgenes , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
9.
PLoS Genet ; 17(12): e1009951, 2021 12.
Article in English | MEDLINE | ID: mdl-34871319

ABSTRACT

Mammalian cells release different types of vesicles, collectively termed extracellular vesicles (EVs). EVs contain cellular microRNAs (miRNAs) with an apparent potential to deliver their miRNA cargo to recipient cells to affect the stability of individual mRNAs and the cells' transcriptome. The extent to which miRNAs are exported via the EV route and whether they contribute to cell-cell communication are controversial. To address these issues, we defined multiple properties of EVs and analyzed their capacity to deliver packaged miRNAs into target cells to exert biological functions. We applied well-defined approaches to produce and characterize purified EVs with or without specific viral miRNAs. We found that only a small fraction of EVs carried miRNAs. EVs readily bound to different target cell types, but EVs did not fuse detectably with cellular membranes to deliver their cargo. We engineered EVs to be fusogenic and document their capacity to deliver functional messenger RNAs. Engineered fusogenic EVs, however, did not detectably alter the functionality of cells exposed to miRNA-carrying EVs. These results suggest that EV-borne miRNAs do not act as effectors of cell-to-cell communication.


Subject(s)
Cell Communication/genetics , Extracellular Vesicles/genetics , MicroRNAs/genetics , Transcriptome/genetics , Animals , Flow Cytometry , HEK293 Cells , Humans , Luciferases/genetics , Plasmids/genetics , RNA, Messenger/genetics , Transfection
10.
Front Immunol ; 12: 632154, 2021.
Article in English | MEDLINE | ID: mdl-34093525

ABSTRACT

The human gastric pathogen Helicobacter pylori activates human epithelial cells by a particular combination of mechanisms, including NOD1 and ALPK1-TIFA activation. These mechanisms are characterized by a strong participation of the bacterial cag pathogenicity island, which forms a type IV secretion system (CagT4SS) that enables the bacteria to transport proteins and diverse bacterial metabolites, including DNA, glycans, and cell wall components, into human host cells. Building on previous findings, we sought to determine the contribution of lipopolysaccharide inner core heptose metabolites (ADP-heptose) in the activation of human phagocytic cells by H. pylori. Using human monocyte/macrophage-like Thp-1 cells and human primary monocytes and macrophages, we were able to determine that a substantial part of early phagocytic cell activation, including NF-κB activation and IL-8 production, by live H. pylori is triggered by bacterial heptose metabolites. This effect was very pronounced in Thp-1 cells exposed to bacterial purified lysates or pure ADP-heptose, in the absence of other bacterial MAMPs, and was significantly reduced upon TIFA knock-down. Pure ADP-heptose on its own was able to strongly activate Thp-1 cells and human primary monocytes/macrophages. Comprehensive transcriptome analysis of Thp-1 cells co-incubated with live H. pylori or pure ADP-heptose confirmed a signature of ADP-heptose-dependent transcript activation in monocyte/macrophages. Bacterial enzyme-treated lysates (ETL) and pure ADP-heptose-dependent activation differentiated monocytes into macrophages of predominantly M1 type. In Thp-1 cells, the active CagT4SS was less required for the heptose-induced proinflammatory response than in epithelial cells, while active heptose biosynthesis or pure ADP-heptose was required and sufficient for their early innate response and NF-κB activation. The present data suggest that early activation and maturation of incoming and resident phagocytic cells (monocytes, macrophages) in the H. pylori-colonized stomach strongly depend on bacterial LPS inner core heptose metabolites, also with a significant contribution of an active CagT4SS.


Subject(s)
Genomic Islands/physiology , Helicobacter pylori/metabolism , Heptoses/metabolism , Macrophages/immunology , Monocytes/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Biosynthetic Pathways , Helicobacter pylori/pathogenicity , Humans , Immunity, Innate , Lipopolysaccharides/metabolism , Macrophage Activation , Macrophages/metabolism , Monocytes/metabolism , Signal Transduction , Transcriptome , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
11.
PLoS Pathog ; 17(4): e1009117, 2021 04.
Article in English | MEDLINE | ID: mdl-33857265

ABSTRACT

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.


Subject(s)
B-Lymphocytes/virology , CRISPR-Cas Systems/genetics , Epstein-Barr Virus Infections/genetics , Gene Editing , Lymphocyte Activation/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Gene Editing/methods , Gene Knockout Techniques/methods , Herpesvirus 4, Human/genetics , Humans , Lymphocyte Activation/immunology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Latency/genetics
12.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785626

ABSTRACT

Epstein-Barr virus (EBV), a human herpesvirus, encodes 44 microRNAs (miRNAs), which regulate many genes with various functions in EBV-infected cells. Multiple target genes of the EBV miRNAs have been identified, some of which play important roles in adaptive antiviral immune responses. Using EBV mutant derivatives, we identified additional roles of viral miRNAs in governing versatile type I interferon (IFN) responses upon infection of human primary mature B cells. We also found that Epstein-Barr virus-encoded small RNAs (EBERs) and LF2, viral genes with previously reported functions in inducing or regulating IFN-I pathways, had negligible or even contrary effects on secreted IFN-α in our model. Data mining and Ago PAR-CLIP experiments uncovered more than a dozen previously uncharacterized, direct cellular targets of EBV miRNA associated with type I IFN pathways. We also identified indirect targets of EBV miRNAs in B cells, such as TRL7 and TLR9, in the prelatent phase of infection. The presence of epigenetically naive, non-CpG methylated viral DNA was essential to induce IFN-α secretion during EBV infection in a TLR9-dependent manner. In a newly established fusion assay, we verified that EBV virions enter a subset of plasmacytoid dendritic cells (pDCs) and determined that these infected pDCs are the primary producers of IFN-α in EBV-infected peripheral blood mononuclear cells. Our findings document that many EBV-encoded miRNAs regulate type I IFN response in newly EBV infected primary human B cells in the prelatent phase of infection and dampen the acute release of IFN-α in pDCs upon their encounter with EBV.IMPORTANCE Acute antiviral functions of all nucleated cells rely on type I interferon (IFN-I) pathways triggered upon viral infection. Host responses encompass the sensing of incoming viruses, the activation of specific transcription factors that induce the transcription of IFN-I genes, the secretion of different IFN-I types and their recognition by the heterodimeric IFN-α/ß receptor, the subsequent activation of JAK/STAT signaling pathways, and, finally, the transcription of many IFN-stimulated genes (ISGs). In sum, these cellular functions establish a so-called antiviral state in infected and neighboring cells. To counteract these cellular defense mechanisms, viruses have evolved diverse strategies and encode gene products that target antiviral responses. Among such immune-evasive factors are viral microRNAs (miRNAs) that can interfere with host gene expression. We discovered that multiple miRNAs of Epstein-Barr virus (EBV) control over a dozen cellular genes that contribute to the antiviral states of immune cells, specifically B cells and plasmacytoid dendritic cells (pDCs). We identified the viral DNA genome as the activator of IFN-α and question the role of abundant EBV EBERs, that, contrary to previous reports, do not have an apparent inducing function in the IFN-I pathway early after infection.


Subject(s)
Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/metabolism , Interferon-alpha/metabolism , Interferon-beta/metabolism , MicroRNAs/metabolism , RNA, Viral/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Gene Expression Regulation, Viral , Herpesvirus 4, Human/genetics , Host-Pathogen Interactions , Humans , Interferon-alpha/genetics , Interferon-beta/genetics , MicroRNAs/genetics , RNA, Viral/genetics , Signal Transduction , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
13.
EMBO J ; 39(19): e105071, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32840892

ABSTRACT

Inflammasomes execute a unique type of cell death known as pyroptosis. Mostly characterized in myeloid cells, caspase-1 activation downstream of an inflammasome sensor results in the cleavage and activation of gasdermin D (GSDMD), which then forms a lytic pore in the plasma membrane. Recently, CARD8 was identified as a novel inflammasome sensor that triggers pyroptosis in myeloid leukemia cells upon inhibition of dipeptidyl-peptidases (DPP). Here, we show that blocking DPPs using Val-boroPro triggers a lytic form of cell death in primary human CD4 and CD8 T cells, while other prototypical inflammasome stimuli were not active. This cell death displays morphological and biochemical hallmarks of pyroptosis. By genetically dissecting candidate components in primary T cells, we identify this response to be dependent on the CARD8-caspase-1-GSDMD axis. Moreover, DPP9 constitutes the relevant DPP restraining CARD8 activation. Interestingly, this CARD8-induced pyroptosis pathway can only be engaged in resting, but not in activated T cells. Altogether, these results broaden the relevance of inflammasome signaling and associated pyroptotic cell death to T cells, central players of the adaptive immune system.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Inflammasomes/immunology , Lymphocyte Activation , Neoplasm Proteins/immunology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/immunology , Humans , Intracellular Signaling Peptides and Proteins/immunology , Phosphate-Binding Proteins/immunology
14.
Am J Pathol ; 189(3): 521-539, 2019 03.
Article in English | MEDLINE | ID: mdl-30593822

ABSTRACT

Humanized mice developing functional human T cells endogenously and capable of recognizing cognate human leukocyte antigen-matched tumors are emerging as relevant models for studying human immuno-oncology in vivo. Herein, mice transplanted with human CD34+ stem cells and bearing endogenously developed human T cells for >15 weeks were infected with an oncogenic recombinant Epstein-Barr virus (EBV), encoding enhanced firefly luciferase and green fluorescent protein. EBV-firefly luciferase was detectable 1 week after infection by noninvasive optical imaging in the spleen, from where it spread rapidly and systemically. EBV infection resulted into a pronounced immunologic skewing regarding the expansion of CD8+ T cells in the blood outnumbering the CD4+ T and CD19+ B cells. Furthermore, within 10 weeks of infections, mice developing EBV-induced tumors had significantly higher absolute numbers of CD8+ T cells in lymphatic tissues than mice controlling tumor development. Tumor outgrowth was paralleled by an up-regulation of the programmed cell death receptor 1 on CD8+ and CD4+ T cells, indicative for T-cell dysfunction. Histopathological examinations and in situ hybridizations for EBV in tumors, spleen, liver, and kidney revealed foci of EBV-infected cells in perivascular regions in close association with programmed cell death receptor 1-positive infiltrating lymphocytes. The strong spatiotemporal correlation between tumor development and the T-cell dysfunctional status seen in this viral oncogenesis humanized model replicates observations obtained in the clinical setting.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Neoplasm Proteins/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Epstein-Barr Virus Infections/pathology , Humans , Lymphocyte Activation , Mice , Mice, Mutant Strains , Neoplasms/pathology , Neoplasms/virology
15.
Front Immunol ; 9: 2037, 2018.
Article in English | MEDLINE | ID: mdl-30245693

ABSTRACT

An appropriate immune response requires a tight balance between pro- and anti-inflammatory mechanisms. IL-10 is induced at late time-points during acute inflammatory conditions triggered by TLR-dependent recognition of infectious agents and is involved in setting this balance, operating as a negative regulator of the TLR-dependent signaling pathway. We identified miR-125a~99b~let-7e as an evolutionary conserved microRNA cluster late-induced in human monocytes exposed to the TLR4 agonist LPS as an effect of this IL-10-dependent regulatory loop. We demonstrated that microRNAs generated by this cluster perform a pervasive regulation of the TLR signaling pathway by direct targeting receptors (TLR4, CD14), signaling molecules (IRAK1), and effector cytokines (TNFα, IL-6, CCL3, CCL7, CXCL8). Modulation of miR-125a~99b~let-7e cluster influenced the production of proinflammatory cytokines in response to LPS and the IL-10-mediated tolerance to LPS, thus identifying this gene as a previously unrecognized major regulatory element of the inflammatory response and endotoxin tolerance.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Multigene Family , Signal Transduction , Toll-Like Receptor 4/metabolism , Cell Line , Computational Biology/methods , Cytokines/metabolism , Gene Expression Profiling , Genes, Reporter , Humans , Immune Tolerance , Immunophenotyping , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Monocytes/immunology , Monocytes/metabolism , RNA Interference , Toll-Like Receptor 4/genetics
16.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28592533

ABSTRACT

Epstein-Barr virus (EBV) has established lifelong infection in more than 90% of humanity. While infection is usually controlled by the immune system, the human host fails to completely eliminate the pathogen. Several herpesviral proteins are known to act as immunoevasins, preventing or reducing recognition of EBV-infected cells. Only recently were microRNAs of EBV identified to reduce immune recognition further. This Gem summarizes what we know about immunomodulatory microRNAs of herpesviruses.


Subject(s)
Gene Expression Regulation , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Host-Pathogen Interactions , Immune Evasion , MicroRNAs/metabolism , RNA, Viral/metabolism , Humans
17.
Proc Natl Acad Sci U S A ; 113(42): E6467-E6475, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27698133

ABSTRACT

Infection with Epstein-Barr virus (EBV) affects most humans worldwide and persists life-long in the presence of robust virus-specific T-cell responses. In both immunocompromised and some immunocompetent people, EBV causes several cancers and lymphoproliferative diseases. EBV transforms B cells in vitro and encodes at least 44 microRNAs (miRNAs), most of which are expressed in EBV-transformed B cells, but their functions are largely unknown. Recently, we showed that EBV miRNAs inhibit CD4+ T-cell responses to infected B cells by targeting IL-12, MHC class II, and lysosomal proteases. Here we investigated whether EBV miRNAs also counteract surveillance by CD8+ T cells. We have found that EBV miRNAs strongly inhibit recognition and killing of infected B cells by EBV-specific CD8+ T cells through multiple mechanisms. EBV miRNAs directly target the peptide transporter subunit TAP2 and reduce levels of the TAP1 subunit, MHC class I molecules, and EBNA1, a protein expressed in most forms of EBV latency and a target of EBV-specific CD8+ T cells. Moreover, miRNA-mediated down-regulation of the cytokine IL-12 decreases the recognition of infected cells by EBV-specific CD8+ T cells. Thus, EBV miRNAs use multiple, distinct pathways, allowing the virus to evade surveillance not only by CD4+ but also by antiviral CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/immunology , Immunologic Surveillance/genetics , MicroRNAs/genetics , RNA, Viral/genetics , Antigen Presentation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cell Survival/immunology , Cytokines/metabolism , Cytotoxicity, Immunologic , Epitopes, T-Lymphocyte/metabolism , Epstein-Barr Virus Infections/metabolism , Gene Expression Regulation, Viral , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immune Evasion , Receptors, Cytokine/metabolism
18.
J Exp Med ; 213(10): 2065-80, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27621419

ABSTRACT

Epstein-Barr virus (EBV) is a tumor virus that establishes lifelong infection in most of humanity, despite eliciting strong and stable virus-specific immune responses. EBV encodes at least 44 miRNAs, most of them with unknown function. Here, we show that multiple EBV miRNAs modulate immune recognition of recently infected primary B cells, EBV's natural target cells. EBV miRNAs collectively and specifically suppress release of proinflammatory cytokines such as IL-12, repress differentiation of naive CD4(+) T cells to Th1 cells, interfere with peptide processing and presentation on HLA class II, and thus reduce activation of cytotoxic EBV-specific CD4(+) effector T cells and killing of infected B cells. Our findings identify a previously unknown viral strategy of immune evasion. By rapidly expressing multiple miRNAs, which are themselves nonimmunogenic, EBV counteracts recognition by CD4(+) T cells and establishes a program of reduced immunogenicity in recently infected B cells, allowing the virus to express viral proteins required for establishment of life-long infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Herpesvirus 4, Human/genetics , Interleukin-12/metabolism , MicroRNAs/genetics , Peptides/metabolism , Antigen Presentation , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cell Death , Cell Differentiation , Cell Membrane/metabolism , Cytokines/metabolism , HEK293 Cells , Humans , Immunity , Inflammation Mediators/metabolism , Lysosomes/metabolism , MicroRNAs/metabolism , Receptors, Cell Surface/metabolism , Species Specificity , Th1 Cells/cytology , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...