Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7890, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193736

ABSTRACT

As many as 80% of critically ill patients develop delirium increasing the need for institutionalization and higher morbidity and mortality. Clinicians detect less than 40% of delirium when using a validated screening tool. EEG is the criterion standard but is resource intensive thus not feasible for widespread delirium monitoring. This study evaluated the use of limited-lead rapid-response EEG and supervised deep learning methods with vision transformer to predict delirium. This proof-of-concept study used a prospective design to evaluate use of supervised deep learning with vision transformer and a rapid-response EEG device for predicting delirium in mechanically ventilated critically ill older adults. Fifteen different models were analyzed. Using all available data, the vision transformer models provided 99.9%+ training and 97% testing accuracy across models. Vision transformer with rapid-response EEG is capable of predicting delirium. Such monitoring is feasible in critically ill older adults. Therefore, this method has strong potential for improving the accuracy of delirium detection, providing greater opportunity for individualized interventions. Such an approach may shorten hospital length of stay, increase discharge to home, decrease mortality, and reduce the financial burden associated with delirium.


Subject(s)
Deep Learning , Delirium , Humans , Aged , Critical Illness , Patient Discharge , Electroencephalography , Intensive Care Units
2.
Res Nurs Health ; 45(6): 652-663, 2022 12.
Article in English | MEDLINE | ID: mdl-36321335

ABSTRACT

Delirium occurs in as many as 80% of critically ill older adults and is associated with increased long-term cognitive impairment, institutionalization, and mortality. Less than half of delirium cases are identified using currently available subjective assessment tools. Electroencephalogram (EEG) has been identified as a reliable objective measure but has not been feasible. This study was a prospective pilot proof-of-concept study, to examine the use of machine learning methods evaluating the use of gamma band to predict delirium from EEG data derived from a limited lead rapid response handheld device. Data from 13 critically ill participants aged 50 or older requiring mechanical ventilation for more than 12 h were enrolled. Across the three models, accuracy of predicting delirium was 70 or greater. Stepwise discriminant analysis provided the best overall method. While additional research is needed to determine the best cut points and efficacy, use of a handheld limited lead rapid response EEG device capable of monitoring all five cerebral lobes of the brain for predicting delirium hold promise.


Subject(s)
Delirium , Humans , Aged , Delirium/diagnosis , Critical Illness , Pilot Projects , Prospective Studies , Gamma Rays , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...