Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 104(1): 34-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697670

ABSTRACT

Integrative studies are lacking on the responses of digestive enzymes and energy reserves in conjunction with morphological traits at distinct postprandial times in marine estuarine-dependent flatfishes of ecological and economic importance, such as Paralichthys orbignyanus. We determined total weight (TW), hepato-somatic index (IH), activities of digestive enzymes in the intestine, and the concentration of energy reserves in the liver and the muscle at 0, 24, 72, and 360 h after feeding in juveniles of P. orbignyanus. Amylase activity decreased at 72 h (about 30%). Maltase, sucrose, and lipase activities reached peak at 24 h (67%, 600%, and 35%, respectively). Trypsin and aminopeptidase-N activities at 24 and 72 h, respectively, were lower than those at t = 0 (53% and 30%). A peak increase in the concentration of glycogen and triglycerides in the liver (24 h) (86% and 89%, respectively) occurred. In muscle, glycogen and triglyceride concentrations were unchanged at 24 h and higher at 72 and 360 h (100% and 60%). No changes were found in TW, IH, free glucose in the liver and muscle, and protein in the liver. The protein concentration in the muscle sharply increased at 24 and 360 h after feeding (60%). The results indicate a distinct and specific response of central components of carbohydrate, lipid, and protein metabolism that could be adjustments at the biochemical level upon periods of irregular feeding and even of long-term food deprivation inside coastal lagoons or estuaries. The distinct responses of digestive enzymes in the intestine and energy reserves in the liver and muscle suggest the differential modulation of tissue-specific anabolic and catabolic pathways that would allow the maintenance of physical conditions.


Subject(s)
Flatfishes , Flounder , Animals , Flatfishes/metabolism , Proteins/metabolism , Glucose/metabolism , Liver/metabolism , Glycogen/metabolism , Flounder/metabolism , Triglycerides
3.
J Comp Physiol B ; 192(5): 561-573, 2022 09.
Article in English | MEDLINE | ID: mdl-35513525

ABSTRACT

Many animals face periods of feeding restrictions implying fasting and refeeding. The determination of digestive/metabolic and body condition parameters at different times of food deprivation and after refeeding allows to evaluate the postprandial dynamics, the transition from feeding to fasting and the capacity to reverse digestive and metabolic alterations. In spite of its physiological importance, studies on estuarine-dependent detritivore fish are lacking. We determined total mass (TM), relative intestine length (RIL), hepatosomatic index (HSI), digestive enzymes activities in the intestine and energy reserves in liver and muscle at 0, 24, 72, 144 and 240 h after feeding and at 72 h after refeeding in prejuveniles of Mugil liza (Mugilidae) as a model species. After feeding, a decrease occurred in: TM (144 h, 25%), RIL (144 h, 23%); amylase and maltase (72 h, 45 and 35%), sucrase (24 h, 40%) and lipase (24 h, 70%) in intestine; glycogen and free glucose (72 h, 90 and 92%) in liver. In muscle, glycogen (72-144 h) and free glucose (144 h) (170% and 165%, respectively) peak increased; triglycerides decreased at 24-240 h (50%). After refeeding TM, RIL, carbohydrases activities in intestine, glycogen and free glucose in liver were recovered. In muscle, glycogen and free glucose were similar to 0 h; lipase activity and triglycerides were not recovered. Trypsin and APN in intestine, triglycerides in liver, protein in liver and muscle and HSI did not change. The differential modulation of key components of carbohydrates and lipid metabolism after feeding/refeeding would allow to face fasting and recover body condition. Our results improve lacking knowledge about digestive and metabolic physiology of detritivore fish.


Subject(s)
Postprandial Period , Smegmamorpha , Animals , Fasting/metabolism , Fishes/metabolism , Glucose/metabolism , Glycogen/metabolism , Lipase , Liver/metabolism , Postprandial Period/physiology , Proteins/metabolism , Triglycerides/metabolism
4.
J Fish Biol ; 98(3): 643-654, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33124694

ABSTRACT

The family Mugilidae consists mainly of diadromous species, whose reproduction occurs in offshore waters. Pre-juveniles shift their diet in the surf zone (zooplanktophagous to iliophagous). Later, during their recruitment into estuaries, huge changes take place in their digestive system. However, digestive and metabolic characteristics and some morphological traits at recruitment are unknown for Mugilidae. We performed comparative studies on early and late pre-juveniles of Mugil liza recruited in Mar Chiquita Coastal Lagoon (37°32'-37°45'S, 57°19'-57°26'W, Argentina). We determined digestive enzyme activities (intestine), energy reserves (liver/muscle), total/standard length, total weight, intestinal coefficient, hepatosomatic index and retroperitoneal fat. Pre-juveniles exhibited amylase, maltase, sucrase, lipase, trypsin and aminopeptidase-N (APN) activities, which were maintained over a wide range of pH and temperature, and exhibited Michaelis-Menten kinetics. In late pre-juveniles, amylase (422 ± 131 µmol maltose min-1 mgprot-1 ), sucrase (86 ± 14 mg glucose min-1 mgprot-1 ), trypsin (84 ± 9 µmoles min-1 mgprot-1 ) and APN (0.58 ± 0.08 µmoles min-1 mgprot-1 ) activities were higher (42%, 28%, 35% and 28%, respectively) than in the early stage. Also, the intestinal coefficient was higher in late (3.04) compared to early (2.06) pre-juveniles. Moreover, the liver appeared to be a main site of glycogen and triglyceride storage in late pre-juveniles, muscle being the site of storage in early pre-juveniles, exhibiting higher glycogen, free glucose and protein concentrations (92%, 82%, 32%, respectively). The results suggest that pre-juveniles of M. liza exhibit an adequate digestive battery to perform complete hydrolysis of various dietary substrates, availability of energy reserves and morphological characteristics to support their feeding habit and growth after recruitment. Our results represent an important contribution to knowledge of the ecology and digestive physiology of pre-juveniles of Mugilidae in the wild.


Subject(s)
Digestion/physiology , Energy Metabolism , Metabolome , Smegmamorpha/growth & development , Smegmamorpha/metabolism , Animals , Argentina , Diet , Enzymes/metabolism , Estuaries , Glycogen/metabolism , Intestines/enzymology , Liver/metabolism , Muscles/metabolism , Smegmamorpha/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...