Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 58(2): 504-509, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30408311

ABSTRACT

Single-atom heterogeneous catalysts with well-defined architectures are promising for deriving structure-performance relationships, but the challenge lies in finely tuning the structural and electronic properties of the metal. To tackle this point, a new approach based on the surface diffusion of gold atoms on different cavities of N-doped carbon is presented. By controlling the activation temperature, the coordination neighbors (Cl, O, N) and the oxidation state of the metal can be tailored. Semi-hydrogenation of various alkynes on the single-atom gold catalysts displays substrate-dependent catalytic responses; structure insensitive for alkynols with γ-OH and unfunctionalized alkynes, and sensitive for alkynols with α-OH. Density functional theory links the sensitivity for alkynols to the strong interaction between the substrate and specific gold-cavity ensembles, mimicking a molecular recognition pattern that allows to identify the cavity site and to enhance the catalytic activity.

2.
Nat Commun ; 9(1): 2634, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29980682

ABSTRACT

Ensemble control has been intensively pursued for decades to identify sustainable alternatives to the Lindlar catalyst (PdPb/CaCO3) applied for the partial hydrogenation of alkynes in industrial organic synthesis. Although the geometric and electronic requirements are known, a literature survey illustrates the difficulty of transferring this knowledge into an efficient and robust catalyst. Here, we report a simple treatment of palladium nanoparticles supported on graphitic carbon nitride with aqueous sodium sulfide, which directs the formation of a nanostructured Pd3S phase with controlled crystallographic orientation, exhibiting unparalleled performance in the semi-hydrogenation of alkynes in the liquid phase. The exceptional behavior is linked to the multifunctional role of sulfur. Apart from defining a structure integrating spatially-isolated palladium trimers, the active ensembles, the modifier imparts a bifunctional mechanism and weak binding of the organic intermediates. Similar metal trimers are also identified in Pd4S, evidencing the pervasiveness of these selective ensembles in supported palladium sulfides.

3.
Angew Chem Int Ed Engl ; 56(36): 10755-10760, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28696499

ABSTRACT

Indium oxide catalyzes acetylene hydrogenation with high selectivity to ethylene (>85 %); even with a large excess of the alkene. In situ characterization reveals the formation of oxygen vacancies under reaction conditions, while an in depth theoretical analysis links the surface reduction with the creation of well-defined vacancies and surrounding In3 O5 ensembles, which are considered responsible for this outstanding catalytic function. This behavior, which differs from that of other common reducible oxides, originates from the presence of four crystallographically inequivalent oxygen sites in the indium oxide surface. These resulting ensembles are 1) stable against deactivation, 2) homogeneously and densely distributed, and 3) spatially isolated and confined against transport; thereby broadening the scope of oxides in hydrogenation catalysis.

4.
ACS Nano ; 10(3): 3166-75, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26863408

ABSTRACT

Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne.

5.
Angew Chem Int Ed Engl ; 54(38): 11265-9, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26230282

ABSTRACT

We report the preparation and hydrogenation performance of a single-site palladium catalyst that was obtained by the anchoring of Pd atoms into the cavities of mesoporous polymeric graphitic carbon nitride. The characterization of the material confirmed the atomic dispersion of the palladium phase throughout the sample. The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles. Density functional theory calculations provided fundamental insights into the material structure and attributed the high catalyst activity and selectivity to the facile hydrogen activation and hydrocarbon adsorption on atomically dispersed Pd sites.


Subject(s)
Palladium/chemistry , Catalysis , Hydrogenation , Microscopy, Electron, Scanning Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...