Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 506: 153869, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909937

ABSTRACT

Exposure to acrylic amide (AD) has garnered worldwide attention due to its potential adverse health effects, prompting calls from the World Health Organization for intensified research into associated risks. Despite this, the relationship between oral acrylic amide (acrylamide) (AD) exposure and pulmonary dysfunction remains poorly understood. Our study aimed to investigate the correlation between internal oral exposure to AD and the decline in lung function, while exploring potential mediating factors such as tissue inflammation, oxidative stress, pyroptosis, and apoptosis. Additionally, we aimed to evaluate the potential protective effect of zinc oxide nanoparticles green-synthesized moringa extract (ZNO-MONPs) (10 mg/kg b.wt) against ACR toxicity and conducted comprehensive miRNA expression profiling to uncover novel targets and mechanisms of AD toxicity (miRNA 223-3 P and miRNA 325-3 P). Furthermore, we employed computational techniques to predict the interactions between acrylic amide and/or MO-extract components and tissue proteins. Using a rat model, we exposed animals to oral acrylamide (20 mg/kg b.wt for 2 months). Our findings revealed that AD significantly downregulated the expression of miRNA 223-3 P and miRNA 325-3 P, targeting NLRP-3 & GSDMD, respectively, indicating the induction of pyroptosis in pulmonary tissue via an inflammasome activating pathway. Moreover, AD exposure resulted in lipid peroxidative damage and reduced levels of GPX, CAT, GSH, and GSSG. Notably, AD exposure upregulated apoptotic, pyroptotic, and inflammatory genes, accompanied by histopathological damage in lung tissue. Immunohistochemical and immunofluorescence techniques detected elevated levels of indicative harmful proteins including vimentin and 4HNE. Conversely, concurrent administration of ZNO-MONPs with AD significantly elevated the expression of miRNA 223-3 P and miRNA 325-3 P, protecting against oxidative stress, apoptosis, pyroptosis, inflammation, and fibrosis in rat lungs. In conclusion, our study highlights the efficacy of ZNO-MONPs NPs in protecting pulmonary tissue against the detrimental impacts of foodborne toxin AD.


Subject(s)
Inflammasomes , MicroRNAs , Plant Extracts , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Inflammasomes/genetics , Rats , Male , Pyroptosis/drug effects , Signal Transduction/drug effects , Plant Extracts/pharmacology , Acrylamide/toxicity , Lung/drug effects , Lung/pathology , Lung/metabolism , Oxidative Stress/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Acrylamides/toxicity , Lung Injury/chemically induced , Lung Injury/pathology , Lung Injury/genetics , Lung Injury/metabolism
2.
Int J Biol Macromol ; 265(Pt 2): 131064, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518935

ABSTRACT

Protein kinases are an attractive therapeutic target for cardiovascular, cancer and neurodegenerative diseases. Cancer cells demand energy generation through aerobic glycolysis, surpassing "oxidative phosphorylation" (OXPHOS) in mitochondria. The pyruvate dehydrogenase kinases (PDKs) have many regulatory roles in energy generation balance by controlling the pyruvate dehydrogenase complex. Overexpression of PDKs is associated with the overall survival of cancer. PDK3, an isoform of PDK is highly expressed in various cancer types, is targeted for inhibition in this study. PDK3 has been shown to binds strongly with a natural compound, thymoquinone (TQ), which is known to exhibit anti-cancer potential. Detailed interaction between the PDK3 and TQ was carried out using spectroscopic and docking methods. The overall changes in the protein's structures after TQ binding were estimated by UV-Vis spectroscopy, circular dichroism and fluorescence binding studies. The kinase activity assay was also carried out to see the kinase inhibitory potential of TQ. The enzyme inhibition assay suggested an excellent inhibitory potential of TQ towards PDK3 (IC50 = 5.49 µM). We observed that TQ forms a stable complex with PDK3 without altering its structure and can be a potent PDK3 inhibitor which may be implicated in cancer therapy after desired clinical validation.


Subject(s)
Benzoquinones , Lung Neoplasms , Protein Serine-Threonine Kinases , Humans , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/chemistry , Lung Neoplasms/drug therapy , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...