Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 39(1): 5, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091111

ABSTRACT

Blue light-mediated photobiomodulation (PBM) is a promising approach to promote osteogenesis. However, the underlying mechanisms of PBM in osteogenesis are poorly understood. In this study, a human osteosarcoma cell line (i.e., Saos-2 cells) was subjected to intermittent blue light exposure (2500 µM/m2/s, 70 mW/cm2, 4.2 J/cm2, once every 48 h) and the effects on Saos-2 cell viability, metabolic activity, differentiation, and mineralization were investigated. In addition, this study addressed a possible role of blue light induced cellular oxidative stress as a mechanism for enhanced osteoblast differentiation and mineralization. Results showed that Saos-2 cell viability and metabolic activity were maintained upon blue light exposure compared to unilluminated controls, indicating no negative effects. To the contrary, blue light exposure significantly increased (p < 0.05) alkaline phosphatase activity and Saos-2 cell mediated mineralization. High-performance liquid chromatography (HPLC) assay was used for measurement of reactive oxygen species (ROS) activity and showed a significant increase (p < 0.05) in superoxide (O2•-) and hydrogen peroxide (H2O2) formed after blue light exposure. Together, these results suggest that the beneficial effects of blue light-mediated PBM on osteogenesis may be induced by controlled release of ROS.


Subject(s)
Low-Level Light Therapy , Osteogenesis , Humans , Reactive Oxygen Species/metabolism , Low-Level Light Therapy/methods , Hydrogen Peroxide/pharmacology , Cell Proliferation , Cell Differentiation
2.
Sci Rep ; 10(1): 11260, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647192

ABSTRACT

How living systems respond to weak electromagnetic fields represents one of the major unsolved challenges in sensory biology. Recent evidence has implicated cryptochrome, an evolutionarily conserved flavoprotein receptor, in magnetic field responses of organisms ranging from plants to migratory birds. However, whether cryptochromes fulfill the criteria to function as biological magnetosensors remains to be established. Currently, theoretical predictions on the underlying mechanism of chemical magnetoreception have been supported by experimental observations that exposure to radiofrequency (RF) in the MHz range disrupt bird orientation and mammalian cellular respiration. Here we show that, in keeping with certain quantum physical hypotheses, a weak 7 MHz radiofrequency magnetic field significantly reduces the biological responsivity to blue light of the cryptochrome receptor cry1 in Arabidopsis seedlings. Using an in vivo phosphorylation assay that specifically detects activated cryptochrome, we demonstrate that RF exposure reduces conformational changes associated with biological activity. RF exposure furthermore alters cryptochrome-dependent plant growth responses and gene expression to a degree consistent with theoretical predictions. To our knowledge this represents the first demonstration of a biological receptor responding to RF exposure, providing important new implications for magnetosensing as well as possible future applications in biotechnology and medicine.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Cryptochromes/metabolism , Electromagnetic Fields , Radio Waves , Biological Evolution , Cryptochromes/chemistry , Cryptochromes/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Light , Phosphorylation , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL
...