Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J Plus ; 136(9): 937, 2021.
Article in English | MEDLINE | ID: mdl-34722099

ABSTRACT

An innovative bioextraction method was tested and compared to common chemical extraction for the preservation of waterlogged archeological wood (WAW) artifacts. During burial, WAW artifacts accumulate iron and sulfur species forming iron sulfides. These compounds are harmless in the burial environment, where the oxygen content is low. But upon excavation, the WAW undergoes the oxidation of these compounds, and thus, irreversible physical and chemical damages occur. Fresh and archeological oak and pine samples were selected as representative species of WAW artifacts. Fresh samples were previously artificially contaminated to ascertain the presence of iron and sulfur. Thiobacillus denitrificans and natural iron chelators, called siderophores, were investigated to extract iron and sulfur as a 2-step biological treatment (BT) and compared to sodium persulfate-EDTA as chemical treatment (CT). Consolidation and freeze-drying were performed on the samples after BT and CT as traditional conservation protocols. BT and CT efficiency was evaluated through Raman, inductively coupled plasma-optical emission (ICP-OES), and Fourier transformed infrared (FTIR) spectroscopies. Raman and ICP showed that most of the iron and sulfur was extracted after BT, while some sulfur species remained present on CT samples. None of the extraction methods resulted in a degradation of the wood, as ascertained by FTIR analyses. Yet, all samples presented visual modifications after conservation. Pine samples treated with BT illustrated the oxidation of the species. Present principal component analysis (PCA) and analysis of variance (ANOVA) which were selected as statistical approaches and validated BT as a promising alternative extraction method, with encouraging extraction rates and less alteration of the sample appearance.

2.
Adv Appl Microbiol ; 107: 1-27, 2019.
Article in English | MEDLINE | ID: mdl-31128745

ABSTRACT

The biological oxidation of minerals and ores, called bioleaching, has been studied for the last decades to solubilize metals and recover them. In particular, iron sulfides are the most studied ores for an optimum extraction of different metals, such as copper or zinc. The use of chemolithotrophic bacteria, as Acidothiobacillus ferrooxidans, to oxidize both iron and sulfur species in aerobic conditions and at acidic pH shows promising results. In the field of heritage preservation, the development of "green" treatments is more and more studied. Waterlogged archeological wood presents an accumulation of iron sulfides within its structure, which, after exposition to oxygen, lead to salt precipitation and acidification and so to the degradation of the wooden artifact. A new extraction method, based on the dissolution of iron sulfides by the use of bacteria could be an alternative to the current chemical extraction methods, as being more respectful and ecological. While A. ferrooxidans is very effective in mines and groundwater, in the field of conservation-restoration of wood, Thiobacillus denitrificans is a better candidate as it grows at neutral pH, which is less aggressive for organic substrates (wood here). Preliminary studies show the efficiency of T. denitrificans for the dissolution of iron sulfides, as the concentration of nitrates used as electron donors decreases while the concentration of sulfates produced increases without degrading the wooden matrix. Long-term behavior should be studied to assess the stability of the artifacts after treatment.


Subject(s)
Biotransformation , Ferrous Compounds/metabolism , Proteobacteria/metabolism , Aerobiosis , Hydrogen-Ion Concentration , Industrial Microbiology/methods , Oxidation-Reduction
3.
Adv Appl Microbiol ; 106: 193-225, 2019.
Article in English | MEDLINE | ID: mdl-30798803

ABSTRACT

Siderophores are secondary metabolites produced by different organisms in order to scavenge iron from their surrounding environment making this essential element available to the cell. Presenting high affinity for ferric iron, siderophores are secreted out to form soluble ferric complexes that can be taken up by the organisms. Siderophores present complex chemistry that allows them to form the strongest iron-chelating complexes. Interest in this field is always up to date and new siderophores are found with new roles and applications. For example, siderophores participate to the mobilization of iron and other elements and are involved in virulence processes. Recently, a strong relation between siderophores and oxidative stress tolerance has been also highlighted. Their application in medicine has been widely studied as well as in agriculture. However, new fields are paying attention to the use of siderophores as green-iron chelators. In particular, siderophores have been proposed for the preservation of cultural heritage.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Siderophores/metabolism , Bacteria/genetics , Bacteria/pathogenicity , Fungi/genetics , Fungi/pathogenicity , Iron/metabolism , Iron Chelating Agents/chemistry , Iron Chelating Agents/metabolism , Iron Chelating Agents/pharmacology , Molecular Structure , Oxidative Stress , Secondary Metabolism , Siderophores/chemistry , Siderophores/pharmacology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...