Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Pathologie (Heidelb) ; 45(2): 133-139, 2024 Mar.
Article in German | MEDLINE | ID: mdl-38315198

ABSTRACT

With the advancements in precision medicine, the demands on pathological diagnostics have increased, requiring standardized, quantitative, and integrated assessments of histomorphological and molecular pathological data. Great hopes are placed in artificial intelligence (AI) methods, which have demonstrated the ability to analyze complex clinical, histological, and molecular data for disease classification, biomarker quantification, and prognosis estimation. This paper provides an overview of the latest developments in pathology AI, discusses the limitations, particularly concerning the black box character of AI, and describes solutions to make decision processes more transparent using methods of so-called explainable AI (XAI).


Subject(s)
Artificial Intelligence , Pathology, Molecular , Hope , Precision Medicine
2.
Annu Rev Pathol ; 19: 541-570, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37871132

ABSTRACT

The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.


Subject(s)
Artificial Intelligence , Precision Medicine , Humans
3.
Neuropathol Appl Neurobiol ; 49(1): e12866, 2023 02.
Article in English | MEDLINE | ID: mdl-36519297

ABSTRACT

AIM: Analysis of cerebrospinal fluid (CSF) is essential for diagnostic workup of patients with neurological diseases and includes differential cell typing. The current gold standard is based on microscopic examination by specialised technicians and neuropathologists, which is time-consuming, labour-intensive and subjective. METHODS: We, therefore, developed an image analysis approach based on expert annotations of 123,181 digitised CSF objects from 78 patients corresponding to 15 clinically relevant categories and trained a multiclass convolutional neural network (CNN). RESULTS: The CNN classified the 15 categories with high accuracy (mean AUC 97.3%). By using explainable artificial intelligence (XAI), we demonstrate that the CNN identified meaningful cellular substructures in CSF cells recapitulating human pattern recognition. Based on the evaluation of 511 cells selected from 12 different CSF samples, we validated the CNN by comparing it with seven board-certified neuropathologists blinded for clinical information. Inter-rater agreement between the CNN and the ground truth was non-inferior (Krippendorff's alpha 0.79) compared with the agreement of seven human raters and the ground truth (mean Krippendorff's alpha 0.72, range 0.56-0.81). The CNN assigned the correct diagnostic label (inflammatory, haemorrhagic or neoplastic) in 10 out of 11 clinical samples, compared with 7-11 out of 11 by human raters. CONCLUSIONS: Our approach provides the basis to overcome current limitations in automated cell classification for routine diagnostics and demonstrates how a visual explanation framework can connect machine decision-making with cell properties and thus provide a novel versatile and quantitative method for investigating CSF manifestations of various neurological diseases.


Subject(s)
Deep Learning , Humans , Artificial Intelligence , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
4.
J Fungi (Basel) ; 8(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36135637

ABSTRACT

BACKGROUND: Onychomycosis numbers among the most common fungal infections in humans affecting finger- or toenails. Histology remains a frequently applied screening technique to diagnose onychomycosis. Screening slides for fungal elements can be time-consuming for pathologists, and sensitivity in cases with low amounts of fungi remains a concern. Convolutional neural networks (CNNs) have revolutionized image classification in recent years. The goal of our project was to evaluate if a U-NET-based segmentation approach as a subcategory of CNNs can be applied to detect fungal elements on digitized histologic sections of human nail specimens and to compare it with the performance of 11 board-certified dermatopathologists. METHODS: In total, 664 corresponding H&E- and PAS-stained histologic whole-slide images (WSIs) of human nail plates from four different laboratories were digitized. Histologic structures were manually annotated. A U-NET image segmentation model was trained for binary segmentation on the dataset generated by annotated slides. RESULTS: The U-NET algorithm detected 90.5% of WSIs with fungi, demonstrating a comparable sensitivity with that of the 11 board-certified dermatopathologists (sensitivity of 89.2%). CONCLUSIONS: Our results demonstrate that machine-learning-based algorithms applied to real-world clinical cases can produce comparable sensitivities to human pathologists. Our established U-NET may be used as a supportive diagnostic tool to preselect possible slides with fungal elements. Slides where fungal elements are indicated by our U-NET should be reevaluated by the pathologist to confirm or refute the diagnosis of onychomycosis.

5.
Semin Cancer Biol ; 84: 129-143, 2022 09.
Article in English | MEDLINE | ID: mdl-33631297

ABSTRACT

The complexity of diagnostic (surgical) pathology has increased substantially over the last decades with respect to histomorphological and molecular profiling. Pathology has steadily expanded its role in tumor diagnostics and beyond from disease entity identification via prognosis estimation to precision therapy prediction. It is therefore not surprising that pathology is among the disciplines in medicine with high expectations in the application of artificial intelligence (AI) or machine learning approaches given their capabilities to analyze complex data in a quantitative and standardized manner to further enhance scope and precision of diagnostics. While an obvious application is the analysis of histological images, recent applications for the analysis of molecular profiling data from different sources and clinical data support the notion that AI will enhance both histopathology and molecular pathology in the future. At the same time, current literature should not be misunderstood in a way that pathologists will likely be replaced by AI applications in the foreseeable future. Although AI will transform pathology in the coming years, recent studies reporting AI algorithms to diagnose cancer or predict certain molecular properties deal with relatively simple diagnostic problems that fall short of the diagnostic complexity pathologists face in clinical routine. Here, we review the pertinent literature of AI methods and their applications to pathology, and put the current achievements and what can be expected in the future in the context of the requirements for research and routine diagnostics.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Machine Learning , Neoplasms/diagnosis , Neoplasms/genetics , Prognosis
6.
PLoS One ; 12(6): e0178161, 2017.
Article in English | MEDLINE | ID: mdl-28570703

ABSTRACT

Training of one-vs.-rest SVMs can be parallelized over the number of classes in a straight forward way. Given enough computational resources, one-vs.-rest SVMs can thus be trained on data involving a large number of classes. The same cannot be stated, however, for the so-called all-in-one SVMs, which require solving a quadratic program of size quadratically in the number of classes. We develop distributed algorithms for two all-in-one SVM formulations (Lee et al. and Weston and Watkins) that parallelize the computation evenly over the number of classes. This allows us to compare these models to one-vs.-rest SVMs on unprecedented scale. The results indicate superior accuracy on text classification data.


Subject(s)
Support Vector Machine , Algorithms , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...