Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 16(11): 3674-85, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26418272

ABSTRACT

Furan-2,5-dicarboxylic acid (FDCA)-based furanic-aliphatic polyamides can be used as promising sustainable alternatives to polyphthalamides (semiaromatic polyamides) and be applied as high performance materials with great commercial interest. In this study, poly(octamethylene furanamide) (PA8F), an analog to poly(octamethylene terephthalamide) (PA8T), is successfully produced via Novozym 435 (N435)-catalyzed polymerization, using a one-stage method in toluene and a temperature-varied two-stage method in diphenyl ether, respectively. The enzymatic polymerization results in PA8F with high weight-average molecular weight (M̅(w)) up to 54000 g/mol. Studies on the one-stage enzymatic polymerization in toluene indicate that the molecular weights of PA8F increase significantly with the concentration of N435; with an optimal reaction temperature of 90 °C. The temperature-varied, two-stage enzymatic polymerization in diphenyl ether yields PA8F with higher molecular weights, as compared to the one-stage procedure, at higher reaction temperatures. MALDI-ToF MS analysis suggests that eight end groups are present in the obtained PA8F: ester/amine, ester/ester, amine/amine, acid/amine, ester/acid, acid/acid, ester/amide, and no end groups (cyclic). Compared to PA8T, the obtained PA8F possesses a similar Tg and similar crystal structures, a comparable Td, but a lower Tm.


Subject(s)
Biocompatible Materials/chemistry , Dicarboxylic Acids/chemistry , Furans/chemistry , Nylons/chemistry , Polymers/chemistry , Enzymes, Immobilized , Fungal Proteins , Hot Temperature , Lipase/chemistry , Molecular Weight , Polymerization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Biomacromolecules ; 15(7): 2482-93, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24835301

ABSTRACT

2,5-Bis(hydroxymethyl)furan is a highly valuable biobased rigid diol resembling aromatic monomers in polyester synthesis. In this work, it was enzymatically polymerized with various diacid ethyl esters by Candida antarctica Lipase B (CALB) via a three-stage method. A series of novel biobased furan polyesters with number-average molecular weights (M(n)) around 2000 g/mol were successfully obtained. The chemical structures and physical properties of 2,5-bis(hydroxymethyl)furan-based polyesters were fully characterized. Furthermore, we discussed the effects of the number of the methylene units in the dicarboxylic segments on the physical properties of the furan polyesters.


Subject(s)
Fungal Proteins/chemistry , Furans/chemistry , Lipase/chemistry , Polyesters/chemical synthesis , Magnetic Resonance Spectroscopy , Molecular Weight , Polymerization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Chemistry ; 19(35): 11577-89, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23852805

ABSTRACT

The self-assembly of poly(ethylidene acetate) (st-PEA) into van der Waals-stabilized liquid-crystalline (LC) aggregates is reported. The LC behavior of these materials is unexpected, and unusual for flexible sp(3)-carbon backbone polymers. Although the dense packing of polar ester functionalities along the carbon backbone of st-PEA could perhaps be expected to lead directly to rigid-rod behavior, molecular modeling reveals that individual st-PEA chains are actually highly flexible and should not reveal rigid-rod induced LC behavior. Nonetheless, st-PEA clearly reveals LC behavior, both in solution and in the melt over a broad elevated temperature range. A combined set of experimental measurements, supported by MM/MD studies, suggests that the observed LC behavior is due to self-aggregation of st-PEA into higher-order aggregates. According to MM/MD modeling st-PEA single helices adopt a flexible helical structure with a preferred trans-gauche syn-syn-anti-anti orientation. Unexpectedly, similar modeling experiments suggest that three of these helices can self-assemble into triple-helical aggregates. Higher-order assemblies were not observed in the MM/MD simulations, suggesting that the triple helix is the most stable aggregate configuration. DLS data confirmed the aggregation of st-PEA into higher-order structures, and suggest the formation of rod-like particles. The dimensions derived from these light-scattering experiments correspond with st-PEA triple-helix formation. Langmuir-Blodgett surface pressure-area isotherms also point to the formation of rod-like st-PEA aggregates with similar dimensions as st-PEA triple helixes. Upon increasing the st-PEA concentration, the viscosity of the polymer solution increases strongly, and at concentrations above 20 wt % st-PEA forms an organogel. STM on this gel reveals the formation of helical aggregates on the graphite surface-solution interface with shapes and dimensions matching st-PEA triple helices, in good agreement with the structures proposed by molecular modeling. X-ray diffraction, WAXS, SAXS and solid state NMR spectroscopy studies suggest that st-PEA triple helices are also present in the solid state, up to temperatures well above the melting point of st-PEA. Formation of higher-order aggregates explains the observed LC behavior of st-PEA, emphasizing the importance of the "tertiary structure" of synthetic polymers on their material properties.


Subject(s)
Carbon/chemistry , Macromolecular Substances/chemistry , Polymers/chemistry , Liquid Crystals , Models, Chemical , Models, Molecular , Molecular Structure
4.
Chemistry ; 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20960444

ABSTRACT

The iron(III) spin-crossover compounds [Fe(Hthsa)(thsa)]⋅H2 O (1), [Fe(Hth5Clsa)(th5Clsa)2 ]⋅H2 O (2), and [Fe(Hth5Brsa)(th5Brsa)2 ]⋅H2 O (3) (H2 thsa=salicylaldehyde thiosemicarbazone, H2 th5Clsa=5-chlorosalicylaldehyde thiosemicarbazone, and H2 th5Brsa=5-bromosalicylaldehyde thiosemicarbazone) have been synthesized and their spin-transition properties investigated by magnetic susceptibility, Mössbauer spectroscopy, and differential scanning calorimetry measurements. The three compounds exhibit an abrupt spin transition with a thermal hysteresis effect. The more polarizable the substituent on the salicylaldehyde moiety, the more complete is the transition at room temperature with an increased degree of cooperativity. The molecular structures of 1 and 2 in the high-spin state are revealed. The occurrence of the light-induced excited-spin-state trapping phenomenon appears to be dependent on the substituent incorporated into the 5-position of the salicylaldehyde subunit. Whereas the compounds with an electron-withdrawing group (-Br or -Cl) exhibit light-induced trapped excited high-spin states with great longevity of metastability, the halogen-free compound does not, even though strong intermolecular interactions (such as hydrogen-bonding networks and π stacking) operate in the system. For compound 2, the surface level of photoconversion is less than 35 %. In contrast, compound 3 displays full photoexcitation.

5.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 6): o1048, 2008 May 10.
Article in English | MEDLINE | ID: mdl-21202567

ABSTRACT

The crystal structure of the title compound, C(14)H(14)N(2)O, determined at 100 K, shows that the mol-ecules are not planar in the solid state, in contrast to other diazene (azobenzene) derivatives. The dihedral angle between the planes of the two aromatic rings is 42.32 (7)°. The mol-ecules are linked by inter-molecular O-H⋯N hydrogen bonds, forming an infinite one-dimensional chain.

SELECTION OF CITATIONS
SEARCH DETAIL
...