Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Cell Biol ; 93(3): 253-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25601271

ABSTRACT

B-cell development is a multistep process sustained by a highly coordinated transcriptional network under the control of a limited set of transcription factors. Epigenetic mechanisms, including DNA methylation, histone posttranslational modifications and microRNAs act in concert with transcription factors to promote lineage commitment, define and sustain cell identity and establish heritable cell-type- and stage-specific gene expression profiles. Epigenetic modifiers have recently emerged as key regulators of B-cell development and activation. Central to B-cell-mediated immunity are germinal centers, transient structures formed in secondary lymphoid organs where antigen-specific B cells undergo intense proliferation, immunoglobulin somatic hypermutation and isotype switching, to generate ultimately long-lived memory B cells and terminally differentiated plasma cells expressing high-affinity antibodies. Deregulation of one or more epigenetic axes represents a common feature of several B-cell disorders arising from germinal center B cells, including autoimmunity and lymphoma. Moreover, the hijacking of epigenetic determinants is central to the ability of the B-lymphotropic Epstein-Barr virus (EBV) to establish, via the germinal center reaction, life-long latency and occasionally contribute to malignant B-cell transformation. In the light of recent findings, this review will discuss the relevance of epigenetic deregulation in the pathogenesis of B-cell diseases. Understanding how specific epigenetic alterations contribute to the development of lymphomas, autoimmunity and EBV-associated disorders is instrumental to develop novel therapeutic interventions for the cure of these often fatal pathologies.


Subject(s)
Autoimmune Diseases/genetics , B-Lymphocytes/immunology , Epigenesis, Genetic , Epstein-Barr Virus Infections/genetics , Lymphoma, B-Cell/genetics , Animals , Autoimmune Diseases/immunology , Carcinogenesis/genetics , Cell Differentiation , Epstein-Barr Virus Infections/immunology , Germinal Center/virology , Humans , Immunoglobulin Class Switching , Immunologic Memory , Lymphoma, B-Cell/immunology , Somatic Hypermutation, Immunoglobulin
2.
J Clin Invest ; 123(12): 5009-22, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24200695

ABSTRACT

Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte-induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/enzymology , Lymphoma, Non-Hodgkin/etiology , Polycomb Repressive Complex 2/physiology , Animals , Apoptosis , B-Lymphocytes/pathology , Cell Cycle , Cytidine Deaminase/deficiency , Cytidine Deaminase/genetics , Cytidine Deaminase/physiology , DNA Damage , Enhancer of Zeste Homolog 2 Protein , Enzyme Activation , Gene Expression Regulation, Neoplastic , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Gene Silencing , Germinal Center/immunology , Germinal Center/pathology , Immunity, Humoral , Immunologic Memory , Lymphoma, Non-Hodgkin/enzymology , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/pathology , Lymphopoiesis , Methylation , Mice , Mice, Transgenic , Polycomb Repressive Complex 2/deficiency , Polycomb Repressive Complex 2/genetics , Positive Regulatory Domain I-Binding Factor 1 , Protein Processing, Post-Translational , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...