Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 26(10): 277, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32960345

ABSTRACT

We perform a study of the molecular anisotropy for the H2⋯H2 van der Waals system using a spherical harmonics expansion. We use six leading stable configurations to construct our analytical potential energy surface (PES) from ab initio calculations guided qualitatively by the symmetry-adapted perturbation theory (SAPT) analyses. We extrapolate the energies of the PES performed at the CCSD(T)/aug-cc-pVnZ (n = 2 and 3) levels to the complete basis set (CBS) limit. To best fit the shallow potential energy surface of each leading configuration with the intermolecular distance, it was employed an extended version of the Rydberg potential. To assess the quality of our extrapolated analytical PES, we calculate the second virial coefficients, which are in relatively good agreement with the experimental data. As a result, the spherical harmonics coefficients obtained might be of considerable relevance in spectroscopy and dynamics applications.

3.
J Mol Model ; 23(4): 143, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28364310

ABSTRACT

The addition of C2 to HCN is of relevant interest in astrochemistry. We studied the pathways of this addition to produce CCCN and estimated its reaction rate using the Master Equation in the circumstellar environment. From the results of this study, it was possible to show that a different pathway in the Surface Potential Energy-PES can also be investigated. In a circumstellar envelop environment, with temperatures varying between 1000 K and 2000 K, the abundances of these species are favorable to this kind of addition, and our branching ratio for the rate constant showed that the new pathway is more favorable in comparison with other possibilities for this range of temperatures in this environment, and must be taken into account in any computation of the rate constant. Graphical Abstract Branching ratios of pathways involved in the C2 + HCN → CCCN+H addition, at a temperature range of 1000-2000 K.

4.
J Mol Model ; 23(5): 169, 2017 May.
Article in English | MEDLINE | ID: mdl-28451881

ABSTRACT

We present a theoretical study on the detailed mechanism and kinetics of the H + HCN → H + HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H 2CN, cis-HCNH, trans-HCNH, CNH 2), and seven saddle points (TSn where n = 1 - 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis-HCNH, the fitted expression is k P W2(T) = 9.98 × 10-22 T 2.41 exp(-7.62 kcal.mol-1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10-21 T 2.15 exp(-8.56 kcal.mol-1/R T) in cm 3 molecule -1 s -1. Graphical Abstract (a) Potential energy surface, (b) thermal rate constants as a function of temperature and

5.
J Phys Chem A ; 120(27): 5315-24, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27043842

ABSTRACT

For the prototypical diatomic-molecule-diatomic-molecule interactions H2-HX and H2-X2, where X = F, Cl, Br, quantum-chemical ab initio calculations are carried out on grids of the configuration space, which permit a spherical-harmonics representation of the potential energy surfaces (PESs). Dimer geometries are considered for sets of representative leading configurations, and the PESs are analyzed in terms of isotropic and anisotropic contributions. The leading configurations are individuated by selecting a minimal set of mutual orientations of molecules needed to build the spherical-harmonic expansion on geometrical and symmetry grounds. The terms of the PESs corresponding to repulsive and bonding dimer geometries and the averaged isotropic term, for each pair of interacting molecules, are compared with representations in terms of a potential function proposed by Pirani et al. (see Chem. Phys. Lett. 2004, 394, 37-44 and references therein). Connections of the involved parameters with molecular properties provide insight into the nature of the interactions.

6.
J Mol Model ; 20(7): 2298, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24939466

ABSTRACT

In this work, we performed a thorough investigation of potential energy curves, rovibrational spectra, and spectroscopic constants for dimers whose interactions are mediated by hydrogen bonds and other hydrogen interactions. Particularly, we deal with CH4⋯CH4, CH4⋯H2O, CH4⋯CHF3, and H2O⋯CHF 3 dimers by employing accurate electronic energy calculations with two different basis sets at the MP2 level of theory. Following this, the discrete variable representation method was applied to solve the nuclear Schrödinger equation, thus obtaining spectroscopic constants and rovibrational spectra. The harmonic constant, ω e , presents a direct relation to the strength of dimer interactions. As a general rule, it was found that a decrease of interatomic distances is followed by the increase of D e for all dimers. This behavior suggests that the interaction of CH4⋯CH4 is the weakest among all dimers, followed by CH4⋯CHF3, CH4⋯H2O and the strongest interaction given by the H2O⋯CHF 3 dimer.

SELECTION OF CITATIONS
SEARCH DETAIL
...