Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023813

ABSTRACT

Acinetobacter baumannii is a bacteria associated with nosocomial infections and outbreaks, difficult to control due to its antibiotic resistance, ability to survive in adverse conditions, and biofilm formation adhering to biotic and abiotic surfaces. Therefore, this study aimed to evaluate the antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) and polymyxin B alone and combined in biofilms formed by isolates of carbapenem-resistant A. baumannii (CR-Ab). In the biofilm formation inhibition assay, CR-Ab strains were exposed to different concentrations of the treatments before inducing biofilm formation, to determine the ability to inhibit/prevent bacterial biofilm formation. While in the biofilm rupture assay, the bacterial biofilm formation step was previously carried out and the adhered cells were exposed to different concentrations of the treatments to evaluate their ability to destroy the bacterial biofilm formed. All CR-Ab isolates and ATCC® 19606™ used in this study are strong biofilm formers. The antibiofilm activity of Bio-AgNP and polymyxin B against CR-Ab and ATCC® 19606™ demonstrated inhibitory and biofilm-disrupting activity. When used in combination, Bio-AgNP and polymyxin B inhibited 4.9-100% of biofilm formation in the CR-Ab isolates and ATCC® 19606™. Meanwhile, when Bio-AgNP and polymyxin B were combined, disruption of 6.8-77.8% of biofilm formed was observed. Thus, antibiofilm activity against CR-Ab was demonstrated when Bio-AgNP was used alone or in combination with polymyxin B, emerging as an alternative in the control of CR-Ab strains.

2.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38383758

ABSTRACT

AIMS: Antibiotic management of infections caused by Acinetobacter baumannii often fails due to antibiotic resistance (especially to carbapenems) and biofilm-forming strains. Thus, the objective here was to evaluate in vitro the antibacterial and antibiofilm activity of biogenic silver nanoparticle (Bio-AgNP) combined with meropenem, against multidrug-resistant isolates of A. baumannii. METHODS AND RESULTS: In this study, A. baumannii ATCC® 19606™ and four carbapenem-resistant A. baumannii (Ab) strains were used. The antibacterial activity of Bio-AgNP and meropenem was evaluated through broth microdilution. The effect of the Bio-AgNP association with meropenem was determined by the checkboard method. Also, the time-kill assay and the integrity of the bacterial cell membrane were evaluated. Furthermore, the antibiofilm activity of Bio-AgNP and meropenem alone and in combination was determined. Bio-AgNP has antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration ranging from 0.46 to 1.87 µg ml-1. The combination of Bio-AgNP and meropenem showed a synergistic and additive effect against Ab strains, and Bio-AgNP was able to reduce the MIC of meropenem from 4- to 8-fold. Considering the time-kill of the cell, meropenem and Bio-AgNP when used in combination reduced bacterial load to undetectable levels within 10 min to 24 h after treatment. Protein leakage was observed in all treatments evaluated. When combined, meropenem/Bio-AgNP presents biofilm inhibition for Ab2 isolate and ATCC® 19606™, with 21% and 19%, and disrupts the biofilm from 22% to 50%, respectively. The increase in nonviable cells in the biofilm can be observed after treatment with Bio-AgNP and meropenem in carbapenem-resistant A. baumannii strains. CONCLUSIONS: The combination of Bio-AgNP with meropenem can be a therapeutic option in the treatment of infections caused by carbapenem-resistant A. baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Metal Nanoparticles , Humans , Meropenem/pharmacology , Silver/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Drug Synergism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Microbial Sensitivity Tests
3.
Braz J Microbiol ; 54(4): 2587-2595, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37656404

ABSTRACT

To find novel antibiotic drugs, six 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H derivatives named 1b, 1d (pyrazoles), 2a, 2b, 2c, and 2d (thiazoles) were evaluated in silico and in vitro. The in silico analyses were based on ADME pharmacokinetic parameters (absorption, distribution, metabolism, and excretion). The in vitro antibacterial activity was evaluated in Gram-positive and Gram-negative species (Staphylococcus aureus ATCC® 25904, Staphylococcus epidermidis ATCC® 35984, Klebsiella pneumoniae ATCC® 700603, and Acinetobacter baumannii ATCC® 19606), by determination of minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), kinetics curve, and antibiofilm assays. As results, the azoles have activity against the Gram-negative species K. pneumoniae ATCC® 700603 and A. baumannii ATCC® 19606. No antibacterial activity was observed for the Gram-positive bacteria evaluated. Thus, the azoles were evaluated against clinical isolates of K. pneumoniae carbapenemase (KPC) and A. baumannii multidrug-resistant (Ab-MDR). All azoles have antibacterial activity against Ab-MDR isolates (Gram-negative) with MIC values between 512 µg/mL and 1,024 µg/mL. Against KPC isolates the azoles 1b, 1d, and 2d present antibacterial activity (MIC = 1,024 µg/mL). In the kinetics curve assay, the 1b and 1d pyrazoles reduced significantly viable cells of Ab-MDR isolates and additionally inhibited 86.6 to 95.8% of the biofilm formation. The in silico results indicate high possibility to permeate the blood-brain barrier (2b) and was predict human gastrointestinal absorption (all evaluated azoles). Considering that the research and development of new antibiotics is a priority for drug-resistant pathogens, our study revealed the antibacterial and antibiofilm activity of novel azoles against K. pneumoniae and A. baumannii pathogens.


Subject(s)
Anti-Bacterial Agents , Thiazoles , Humans , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Pyrazoles/pharmacology , Biofilms
4.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688766

ABSTRACT

The Staphylococcus bacteria cause several infections, S. aureus is the major species, expressing different virulence factors. Therefore, coagulase-negative Staphylococcus (CoNS) are nosocomial pathogens, mainly associated with biofilm formation in invasive medical devices. Methicillin-resistant S. aureus (MRSA) and multidrug resistant (MDR) CoNS are widely distributed in the hospital environment, leading to infections that are difficult to treat. Thus, nanoparticles (NPs) are studied as an alternative in the control of these pathogens. Silver nanoparticles (AgNPs) stand out due to their different biological properties, broad-spectrum antibacterial activity, low toxicity, and use in combination with other drugs. Several studies with AgNPs evaluated in-vitro against S. aureus and MRSA validated the spectrum of action of the NPs. However, few studies attempted to explore the response of the CoNS, mainly in vivo studies. Research that explored the in vivo application of AgNPs against these bacteria helped to understand and better elucidate their activity on the skin through different biological models. Furthermore, the application of NPs is a viable alternative for controlling these bacteria, including MDR bacteria, in cases of skin infections by avoiding worsening the clinical condition and favoring tissue regeneration of the injured area.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Staphylococcus , Staphylococcus aureus , Silver , Anti-Bacterial Agents , Microbial Sensitivity Tests
5.
J Appl Microbiol ; 132(2): 1036-1047, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34496109

ABSTRACT

AIMS: Carbapenem-resistant Acinetobacter baumannii represents a public health problem, and the search for new antibacterial drugs has become a priority. Here, we investigate the antibacterial activity of biogenic silver nanoparticles (Bio-AgNPs) synthesized by Fusarium oxysporum, used alone or in combination with polymyxin B against carbapenem-resistant A. baumannii. METHODS AND RESULTS: In this study, ATCC® 19606™ strain and four carbapenem-resistant A. baumannii strains were used. The antibacterial activity of Bio-AgNPs and its synergism with polymyxin B were determined using broth microdilution, checkboard methods and time-kill assays. The integrity of the bacterial cell membrane was monitored by protein leakage assay. In addition, the cytotoxicity in the VERO mammalian cell line was also evaluated, and the selectivity index was calculated. Bio-AgNPs have an antibacterial activity with MIC and MBC ranging from 0.460 to 1.870 µg/ml. The combination of polymyxin B and Bio-AgNPs presents synergy against four of the five strains tested and additivity against one strain in the checkerboard assay. Considering the time of cell death, Bio-AgNPs killed all carbapenem-resistant isolates and ATCC® 19606™ within 1 h. When combined, Bio-AgNPs presented 16-fold reduction of the polymyxin B MIC and showed a decrease in terms of viable A. baumannii cells in 4 h of treatment, with synergic and additive effects. Protein leakage was observed with increasing concentrations for Bio-AgNPs treatments. Additionally, Bio-AgNP and polymyxin B showed dose-dependent cytotoxicity against mammalian VERO cells and combined the cytotoxicity which was significantly reduced and presented a greater pharmacological safety. CONCLUSIONS: The results presented here indicate that Bio-AgNPs in combination with polymyxin B could represent a good alternative in the treatment of carbapenem-resistant A. baumannii. SIGNIFICANCE AND IMPACT OF STUDY: This study demonstrates the synergic effect between Bio-AgNPs and polymyxin B on carbapenem-resistant A. baumannii strains.


Subject(s)
Acinetobacter baumannii , Metal Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Carbapenems , Chlorocebus aethiops , Drug Synergism , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Silver/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...