Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 39(6): 888-92, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25672906

ABSTRACT

BACKGROUND/OBJECTIVES: The forkhead factor Foxa3 is involved in the early transcriptional events controlling adipocyte differentiation and plays a critical function in fat depot expansion in response to high-fat diet regimens and during aging in mice. No studies to date have assessed the potential associations of genetic variants in FOXA3 with human metabolic outcomes. SUBJECTS/METHODS: In this study, we sequenced FOXA3 in 392 children, adolescents and young adults selected from several cohorts of subjects recruited at the National Institute of Child Health and Human Development of the National Institutes of Health based on the availability of dual-energy X-ray absorptiometry data, magnetic resonance imaging scans and DNA samples. We assessed the association between variants present in these subjects and metabolic traits and performed in vitro functional analysis of two novel FOXA3 missense mutations identified. RESULTS: Our analysis identified 14 novel variants and showed that the common single-nucleotide polymorphism (SNP) rs28666870 is significantly associated with greater body mass index, lean body mass and appendicular lean mass (P values 0.009, 0.010 and 0.013 respectively). In vitro functional studies showed increased adipogenic function for the FOXA3 missense mutations c.185C>T (p.Ser62Leu) and c.731C>T (p.Ala244Val) compared with FOXA3-WT. CONCLUSIONS: Our study identified novel FOXA3 variants and mutations, assessed the adipogenic capacity of two novel missense alterations in vitro and demonstrated for the first time the associations between FOXA3 SNP rs28666870 with metabolic phenotypes in humans.


Subject(s)
Body Composition/genetics , Hepatocyte Nuclear Factor 3-gamma/genetics , Mutation, Missense , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Absorptiometry, Photon , Adolescent , Body Mass Index , Child , Cross-Sectional Studies , Diet, High-Fat , Female , Genetic Variation , Hepatocyte Nuclear Factor 3-gamma/metabolism , Humans , Male , Obesity/epidemiology , Obesity/metabolism , Phenotype , Sequence Analysis, DNA , United States/epidemiology , Young Adult
2.
Oncogene ; 33(40): 4867-76, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-24166505

ABSTRACT

Small cell lung cancer (SCLC) at advanced stage is considered an incurable disease. Despite good response to initial chemotherapy, the responses in SCLC patients with metastatic disease are of short duration and resistance inevitably occurs. Although several target-specific drugs have altered the paradigm of treatment for many other cancers, we have yet to witness a revolution of the same magnitude in SCLC treatment. Anthracyclines, such as doxorubicin, have definite activity in this disease, and ganetespib has shown promising activity in preclinical models but underwhelming activity as a single agent in SCLC patients. Using SCLC cell lines, we demonstrated that ganetespib (IC50: 31 nM) was much more potent than 17-allylamino-17-demethoxygeldanamycin (17-AAG), a geldanamycin derivative (IC50: 16 µM). Ganetespib inhibited SCLC cell growth via induction of persistent G2/M arrest and Caspase 3-dependent cell death. MTS assay revealed that ganetespib synergized with both doxorubicin and etoposide, two topoisomerase II inhibitors commonly used in SCLC chemotherapy. Expression of receptor-interacting serine/threonine-protein kinase 1 (RIP1), a protein that may function as a pro-survival scaffold protein or a pro-death kinase in TNFR1-activated cells, was induced by doxorubicin and downregulated by ganetespib. Depletion of RIP1 by either RIP1 small interfering RNA (siRNA) or ganetespib sensitized doxorubicin-induced cell death, suggesting that RIP1 may promote survival in doxorubicin-treated cells and that ganetespib may synergize with doxorubicin in part through the downregulation of RIP1. In comparison to ganetespib or doxorubicin alone, the ganetespib+doxorubicin combination caused significantly more growth regression and death of human SCLC xenografts in immunocompromised mice. We conclude that ganetespib and doxorubicin combination exhibits significant synergy and is efficacious in inhibiting SCLC growth in vitro and in mouse xenograft models. Our preclinical study suggests that ganetespib and doxorubicin combination therapy may be an effective strategy for SCLC treatment, which warrants clinical testing.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Triazoles/pharmacology , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/therapeutic use , Drug Synergism , G2 Phase Cell Cycle Checkpoints , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Lung Neoplasms/pathology , Mice , Mice, Nude , Small Cell Lung Carcinoma/pathology , Triazoles/therapeutic use , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...