Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
IEEE Open J Eng Med Biol ; 5: 32-44, 2024.
Article in English | MEDLINE | ID: mdl-38445238

ABSTRACT

High-density multielectrode catheters are becoming increasingly popular in cardiac electrophysiology for advanced characterisation of the cardiac tissue, due to their potential to identify impaired sites. These are often characterised by abnormal electrical conduction, which may cause locally disorganised propagation wavefronts. To quantify it, a novel heterogeneity parameter based on vector field analysis is proposed, utilising finite differences to measure direction changes between adjacent cliques. The proposed Vector Field Heterogeneity metric has been evaluated on a set of simulations with controlled levels of organisation in vector maps, and a variety of grid sizes. Furthermore, it has been tested on animal experimental models of isolated Langendorff-perfused rabbit hearts. The proposed parameter exhibited superior capturing ability of heterogeneous propagation wavefronts compared to the classical Spatial Inhomogeneity Index, and simulations proved that the metric effectively captures gradual increments in disorganisation in propagation patterns. Notably, it yielded robust and consistent outcomes for [Formula: see text] grid sizes, underscoring its suitability for the latest generation of orientation-independent cardiac catheters.

2.
Article in English | MEDLINE | ID: mdl-38082704

ABSTRACT

The present study aims to design and fabricate a system capable of generating heterogeneities on the epicardial surface of an isolated rabbit heart perfused in a Langendorff system. The system consists of thermoelectric modules that can be independently controlled by the developed hardware, thereby allowing for the generation of temperature gradients on the epicardial surface, resulting in conduction slowing akin to heterogeneities of pathological origin. A comprehensive analysis of the system's viability was performed through modeling and thermal simulation, and its practicality was validated through preliminary tests conducted at the experimental cardiac electrophysiology laboratory of the University of Valencia. The design process involved the use of Fusion 360 for 3D designs, MATLAB/Simulink for algorithms and block diagrams, LTSpice and Altium Designer for schematic captures and PCB design, and the integration of specialized equipment for animal experimentation. The objective of the study was to efficiently capture epicardial recordings under varying conditions.Clinical relevance- The proposed system aims to induce local epicardial heterogeneities to generate labeled correct signals that can serve as a golden standard for improving algorithms that identify and characterize fibrotic substrates. This improvement will enhance the efficacy of ablation processes and potentially reduce the ablated surface area.


Subject(s)
Heart , Animals , Rabbits , Heart/physiology , Heart Rate/physiology , Temperature
3.
J Clin Med ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762990

ABSTRACT

BACKGROUND: Our aim was to determine the differences in short-term heart rate variability (HRV) between patients with metabolic syndrome (MS) and healthy controls. METHODS: We searched electronic databases for primary works with short-term HRV recordings (≤30 min) that made comparisons between individuals with MS versus healthy controls. This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS: Twenty-eight articles were included in the qualitative synthesis and nineteen met the criteria for the MA. Patients with MS showed decreased SDNN (-0.36 [-0.44, -0.28], p < 0.001), rMSSD (-7.59 [-9.98, -5.19], p < 0.001), HF (-0.36 [-0.51, -0.20], p < 0.00001) and LF (-0.24 [-0.38, -0.1], p = 0.001). In subsequent subanalyses, we found a decrease in SDNN (-0.99 (-1.45, -0.52], p < 0.001), rMSSD (-10.18 [-16.85, -3.52], p < 0.01) and HF (-1.04 [-1.97, -0.1] p < 0.05) in women. In men, only LF showed a significant lower value (-0.26 [-0.5, -0.02], p < 0.05). We could not perform MA for non-linear variables. CONCLUSIONS: Patients with MS showed changes in time-domain analyses, with lower values in SDNN and rMSSD. Regarding frequency-domain analyses, MS patients showed a decrease in HF and LF When sex was used as a grouping variable, the MA was only possible in one of both sexes (men or women) in rMSSD and LF/HF. Lastly, when data for both men and women were available, subanalyses showed a different behavior compared to mixed analyses for SDNN, HF and LF, which might point towards a different impact of MS in men and women.

4.
Phys Eng Sci Med ; 46(3): 1193-1204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37358782

ABSTRACT

High-density catheters combined with Orientation Independent Sensing (OIS) methods have emerged as a groundbreaking technology for cardiac substrate characterisation. In this study, we aim to assess the arrangements and constraints to reliably estimate the so-called omnipolar electrogram (oEGM). Performance was evaluated using an experimental animal model. Thirty-eight recordings from nine retrospective experiments on isolated perfused rabbit hearts with an epicardial HD multielectrode were used. We estimated oEGMs according to the classic triangular clique (4 possible orientations) and a novel cross-orientation clique arrangement. Furthermore, we tested the effects of interelectrode spacing from 1 to 4 mm. Performance was evaluated by means of several parameters that measured amplitude rejection ratios, electric field loop area, activation pulse width and morphology distortion. Most reliable oEGM estimations were obtained with cross-configurations and interelectrode spacings [Formula: see text] mm. Estimations from triangular cliques resulted in wider electric field loops and unreliable detection of the direction of the propagation wavefront. Moreover, increasing interelectrode distance resulted in increased pulse width and morphology distortion. The results prove that current oEGM estimation techniques are insufficiently accurate. This study opens a new standpoint for the design of new-generation HD catheters and mapping software.


Subject(s)
Heart , Software , Animals , Rabbits , Retrospective Studies , Electrodes , Models, Animal
5.
J Cardiovasc Dev Dis ; 10(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37233170

ABSTRACT

BACKGROUND: Our aim was to determine the impact that metabolic syndrome (MS) produces in long-term heart rate variability (HRV), quantitatively synthesizing the results of published studies to characterize the cardiac autonomic dysfunction in MS. METHODS: We searched electronic databases for original research works with long-term HRV recordings (24 h) that compared people with MS (MS+) versus healthy people as a control group (MS-). This systematic review and meta-analysis (MA) was performed according to PRISMA guidelines and registered at PROSPERO (CRD42022358975). RESULTS: A total of 13 articles were included in the qualitative synthesis, and 7 of them met the required criteria to be included in the MA. SDNN (-0.33 [-0.57, 0.09], p = 0.008), LF (-0.32 [-0.41, -0.23], p < 0.00001), VLF (-0.21 [-0.31, -0.10], p = 0.0001) and TP (-0.20 [-0.33, -0.07], p = 0.002) decreased in patients with MS. The rMSSD (p = 0.41), HF (p = 0.06) and LF/HF ratio (p = 0.64) were not modified. CONCLUSIONS: In long-term recordings (24 h), SDNN, LF, VLF and TP were consistently decreased in patients with MS. Other parameters that could be included in the quantitative analysis were not modified in MS+ patients (rMSSD, HF, ratio LF/HF). Regarding non-linear analyses, the results are not conclusive due to the low number of datasets found, which prevented us from conducting an MA.

6.
Clin J Sport Med ; 33(5): e152-e156, 2023 09 01.
Article in English | MEDLINE | ID: mdl-34009784

ABSTRACT

OBJECTIVE: Tendinopathy is a prevalent condition in young athletes and in older nonathletic people. Recent tendinopathy research has shown a growing interest in the role played by genetic factors, basically genes involved in collagen synthesis and regulation, in view of collagen disorganization typically present in tendon pathologies. DESIGN: A case-control, genotype-phenotype association study. SETTING: La Ribera Hospital, Valencia, Spain. PARTICIPANTS: A group of 137 young athletes (49 with rotator cuff tendon pathology and 88 healthy counterparts) who played upper-limb-loading sports were clinically and ultrasound (US) assessed for rotator cuff tendinopathy were included. INTERVENTION: Genetic analysis was performed to determine whether there was a relationship between rotator cuff pathology and the genotype. MAIN OUTCOME MEASURES: We hypothesized that the following single nucleotide polymorphisms: COL5a1 rs12722, COL11a1 rs3753841, COL11a1 rs1676486, and COL11a2 rs1799907 would be associated with rotator cuff tendinopathy. RESULTS: A direct relationship between CC genotype and bilateral US pathological images was statistically significant (χ 2 = 0.0051) and confirmed by the Fisher test, with a correlation coefficient of 0.345 and a Cramer's v of 0.26. CONCLUSION: A significant association was found between COL5a1 rs12722 genotype and rotator cuff pathology, with the CC genotype conferring increased risk of tendon abnormalities and being associated with rotator cuff pathology.


Subject(s)
Rotator Cuff , Tendinopathy , Humans , Rotator Cuff/diagnostic imaging , Rotator Cuff/pathology , Genotype , Tendinopathy/diagnostic imaging , Tendinopathy/genetics , Tendinopathy/pathology , Collagen/genetics , Athletes
7.
Chem Sci ; 13(1): 149-158, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35059163

ABSTRACT

A family of substituted 1,2,4-benzothiadiazine 1-chlorides have been prepared by treatment of N-arylamidines in neat thionyl chloride at reflux. The S(iv) 1-chlorides are readily reduced under mild conditions to persistent 1,2,4-benzothiadiazinyl radicals which have been characterised by EPR spectroscopy and cyclic voltammetry. Crystallographic studies on isolated radicals indicate that the radicals dimerise via pancake bonding in the solid-state, resulting in spin-pairing and net diamagnetism.

8.
Animals (Basel) ; 10(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899601

ABSTRACT

A chronic model of acute myocardial infarction was developed to study the mechanisms involved in adverse postinfarction ventricular remodeling. In an acute myocardial infarction (AMI), the left circumflex coronary artery of New Zealand White rabbits (n = 9) was occluded by ligature for 1 h, followed by reperfusion. A specific care protocol was applied before, during, and after the intervention, and the results were compared with those of a sham operated group (n = 7). After 5 weeks, programmed stimulation and high-resolution mapping were performed on isolated and perfused hearts using the Langendorff technique. The infarct size determined by 2,3,5-triphenyltetrazolium chloride inside of the area at risk (thioflavin-S) was then determined. The area at risk was similar in both groups (54.33% (experimental infarct group) vs. 58.59% (sham group), ns). The infarct size was 73.16% as a percentage of the risk area. The experimental infarct group had a higher inducibility of ventricular arrhythmias (100% vs. 43% in the sham group, p = 0.009). A reproducible chronic experimental model of myocardial infarction is presented in which the extent and characteristics of the lesions enable the study of the vulnerability to develop ventricular arrhythmias because of the remodeling process that occurs during cardiac tissue repair.

9.
Chemistry ; 26(29): 6670-6678, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32045041

ABSTRACT

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3 S4 -core cluster, giving rise to a homogeneous distribution of the clusters over the layers. In a second step, a calcination of this molecular/2D heterostructure under N2 leads to the formation of clean WS2 /MoS2 heterostructures, where the photoluminescence of both counterparts is quenched, proving an efficient interlayer coupling. Thus, this chemical method combines the advantages of a solution approach (simple, scalable, and low-cost) with the good quality interfaces reached by using more complicated traditional physical methods.

10.
Animals (Basel) ; 9(8)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426570

ABSTRACT

Metabolic syndrome (MetS) has been linked to a higher prevalence of sudden cardiac death (SCD), but the mechanisms are not well understood. One possible underlying mechanism may be an abnormal modulation of autonomic activity, which can be quantified by analyzing heart rate variability (HRV). Our aim was to investigate the modifications of short-term HRV in an experimental rabbit model during the time-course of MetS development. NZW rabbits were randomly assigned to a control (n = 10) or a MetS group (n = 13), fed 28 weeks with control or high-fat, high-sucrose diets. After anesthesia, a 15-min ECG recording was acquired before diet administration and at weeks 14 and 28. We analyzed short RR time series using time-domain, frequency-domain and nonlinear analyses. A mixed-model factorial ANOVA was used for statistical analysis. Time-domain analysis showed a 52.4% decrease in the standard deviation of heart rate in animals from the MetS group at week 28, but no changes in the rest of parameters. In the frequency domain, we found a 9.7% decrease in the very low frequency and a 380.0% increase of the low frequency bands in MetS animals at week 28, whereas high frequency remained unchanged. Nonlinear analyses showed increased complexity and irregularity of the RR time series in MetS animals.

11.
J Physiol Biochem ; 75(2): 173-183, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30887428

ABSTRACT

Metabolic syndrome (MetS) describes a condition associated with multiple diseases concomitantly such as diabetes, hypertension, obesity, and dyslipidemia. It has been linked with higher prevalence of cardiovascular disease, atrial fibrillation, and sudden cardiac death. One of the underlying mechanisms could be altered automaticity, which would reflect modifications of sinus node activity. These phenomena can be evaluated analyzing the components of heart rate variability (HRV). Our aim was to examine the modifications of sinus node variability in an isolated heart model of diet-induced obesity and MetS. Male NZW rabbits were randomly assigned to high-fat (HF, n = 8), control (HF-C, n = 7), high-fat, high-sucrose (HFHS, n = 9), and control (HFHS-C, n = 9) groups, fed with their respective diets during 18/28 weeks. After euthanasia, their hearts were isolated in a Langendorff system. We recorded 10-15 min of spontaneous activity. Short RR time series were analyzed, and standard HRV parameters were determined. One-way ANOVA, Kruskal-Wallis test, and bivariate correlation were used for statistical analysis (p < 0.05). We did find an increase in the complexity and irregularity of intrinsic pacemaker activity as shown by modifications of approximate entropy, sample entropy, minimum multiscale entropy, and complexity index in HFHS animals. Even though no differences were found in standard time and frequency-domain analyses, spectral heterogeneity increased in HFHS group. Animal weight and glucose intolerance were highly correlated with the modifications of intrinsic pacemaker variability. Finally, modifications of intrinsic HRV seemed to be reliant on the number of components of MetS present, given that only HFHS group showed significant changes towards an increased complexity and irregularity of intrinsic pacemaker variability.


Subject(s)
Heart Rate , Metabolic Syndrome/physiopathology , Obesity/physiopathology , Sinoatrial Node/physiopathology , Animals , Diet, High-Fat/adverse effects , Male , Metabolic Syndrome/etiology , Obesity/etiology , Rabbits , Time Factors
12.
Angew Chem Int Ed Engl ; 58(5): 1371-1375, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30423206

ABSTRACT

Formation of radical-radical cocrystals is an important step towards the design of organic ferrimagnets. We describe a simple approach to generate radical-radical cocrystals through the identification and implementation of well-defined supramolecular synthons which favor cocrystallization over phase separation. In the current paper we implement the structure-directing interactions of the E-E bond (E=S, Se) of dithiadiazolyl (DTDA) and diselenadiazolyl (DSDA) radicals to form close contacts to electronegative groups. This is exemplified through the preparation and structural characterization of three sets of radical cocrystals; the 2:2 cocrystal [PhCNSSN]2 [MBDTA]2 (4) [MBDTA=methyl benzodithiazolyl] and the 2:1 cocrystals [C6 F5 CNEEN]2 [TEMPO] (E=S, 5; E=Se, 6). In 4 the two types of radical are linked via bifurcated inter-dimer δ+ S⋅⋅⋅Nδ- interactions whereas 5 and 6 exhibit a set of five-centre δ+ E⋅⋅⋅Oδ- contacts (E=S, Se).

13.
PLoS One ; 13(12): e0209085, 2018.
Article in English | MEDLINE | ID: mdl-30562383

ABSTRACT

A study has been made of the effect of chronic exercise on myocardial electrophysiological heterogeneity and stability, as well as of the role of cholinergic neurons in these changes. Determinations in hearts from untrained and trained rabbits on a treadmill were performed. The hearts were isolated and perfused. A pacing electrode and a recording multielectrode were located in the left ventricle. The parameters determined during induced VF, before and after atropine (1µM), were: fibrillatory cycle length (VV), ventricular functional refractory period (FRPVF), normalized energy (NE) of the fibrillatory signal and its coefficient of variation (CV), and electrical ventricular activation complexity, as an approach to myocardial heterogeneity and stability. The VV interval was longer in the trained group than in the control group both prior to atropine (78±10 vs. 68±10 ms) and after atropine (76±8 vs. 67±10 ms). Likewise, FRPVF was longer in the trained group than in the control group both prior to and after atropine (53±8 vs. 42±7 ms and 50±6 vs. 40±6 ms, respectively), and atropine did not modify FRPVF. The CV of FRPVF was lower in the trained group than in the control group prior to atropine (12.5±1.5% vs. 15.1±3.8%) and, decreased after atropine (15.1±3.8% vs. 12.2±2.4%) in the control group. The trained group showed higher NE values before (0.40±0.04 vs. 0.36±0.05) and after atropine (0.37±0.04 vs. 0.34±0.06; p = 0.08). Training decreased the CV of NE both before (23.3±2% vs. 25.2±4%; p = 0.08) and after parasympathetic blockade (22.6±1% vs. 26.1±5%). Cholinergic blockade did not modify these parameters within the control and trained groups. Activation complexity was lower in the trained than in the control animals before atropine (34±8 vs. 41±5), and increased after atropine in the control group (41±5 vs. 48±9, respectively). Thus, training decreases the intrinsic heterogeneity of the myocardium, increases electrophysiological stability, and prevents some modifications due to muscarinic block.


Subject(s)
Heart/physiology , Running/physiology , Animals , Atropine/pharmacology , Heart/drug effects , Male , Muscarinic Antagonists/pharmacology , Parasympatholytics/pharmacology , Rabbits , Refractory Period, Electrophysiological/drug effects , Tissue Culture Techniques , Ventricular Fibrillation/physiopathology
14.
Cardiovasc Drugs Ther ; 32(5): 413-425, 2018 10.
Article in English | MEDLINE | ID: mdl-30173392

ABSTRACT

PURPOSE: Mechanical stretch increases sodium and calcium entry into myocytes and activates the late sodium current. GS967, a triazolopyridine derivative, is a sodium channel blocker with preferential effects on the late sodium current. The present study evaluates whether GS967 inhibits or modulates the arrhythmogenic electrophysiological effects of myocardial stretch. METHODS: Atrial and ventricular refractoriness and ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts (n = 28) using epicardial multiple electrodes and high-resolution mapping techniques under control conditions and during the perfusion of GS967 at different concentrations (0.03, 0.1, and 0.3 µM). RESULTS: On comparing ventricular refractoriness, conduction velocity and wavelength obtained before stretch had no significant changes under each GS967 concentration while atrial refractoriness increased under GS967 0.3 µM. Under GS967, the stretch-induced changes were attenuated, and no significant differences were observed between before and during stretch. GS967 0.3 µM diminished the normal stretch-induced changes resulting in longer (less shortened) atrial refractoriness (138 ± 26 ms vs 95 ± 9 ms; p < 0.01), ventricular refractoriness (155 ± 18 ms vs 124 ± 16 ms; p < 0.01) and increments in spectral concentration (23 ± 5% vs 17 ± 2%; p < 0.01), the fifth percentile of ventricular activation intervals (46 ± 8 ms vs 31 ± 3 ms; p < 0.05), and wavelength of ventricular fibrillation (2.5 ±0.5 cm vs 1.7 ± 0.3 cm; p < 0.05) during stretch. The stretch-induced increments in dominant frequency during ventricular fibrillation (control = 38%, 0.03 µM = 33%, 0.1 µM = 33%, 0.3 µM = 14%; p < 0.01) and the stretch-induced increments in arrhythmia complexity index (control = 62%, 0.03µM = 41%, 0.1 µM = 32%, 0.3 µM = 16%; p < 0.05) progressively decreased on increasing the GS967 concentration. CONCLUSIONS: GS967 attenuates stretch-induced changes in cardiac electrophysiology.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/prevention & control , Mechanoreceptors/drug effects , Myocytes, Cardiac/drug effects , Pyridines/pharmacology , Sodium Channel Blockers/pharmacology , Sodium Channels/drug effects , Triazoles/pharmacology , Ventricular Fibrillation/prevention & control , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Isolated Heart Preparation , Male , Mechanoreceptors/metabolism , Mechanotransduction, Cellular/drug effects , Myocytes, Cardiac/metabolism , Rabbits , Refractory Period, Electrophysiological , Sodium Channels/metabolism , Time Factors , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/physiopathology
15.
Cardiovasc Toxicol ; 18(6): 520-529, 2018 12.
Article in English | MEDLINE | ID: mdl-29868937

ABSTRACT

Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.


Subject(s)
Anti-Arrhythmia Agents/toxicity , Glutathione/analogs & derivatives , Mechanoreceptors/metabolism , Mechanotransduction, Cellular , Nitric Oxide Donors/toxicity , Nitro Compounds/toxicity , Ventricular Fibrillation/chemically induced , Ventricular Fibrillation/prevention & control , Action Potentials/drug effects , Animals , Calcium Signaling , Disease Models, Animal , Dose-Response Relationship, Drug , Feedback, Physiological , Glutathione/metabolism , Glutathione/toxicity , Heart Rate/drug effects , Isolated Heart Preparation , Nitric Oxide/metabolism , Nitric Oxide Donors/metabolism , Nitro Compounds/metabolism , Rabbits , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/physiopathology
16.
J Vis Exp ; (134)2018 04 20.
Article in English | MEDLINE | ID: mdl-29733304

ABSTRACT

In recent years, obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and unhealthy eating habits. Thanks to animal models, basic research can investigate the mechanisms underlying pathological processes such as MetS. Here, we describe the methods used to develop an experimental rabbit model of diet-induced MetS and its assessment. After a period of acclimation, animals are fed a high-fat (10% hydrogenated coconut oil and 5% lard), high-sucrose (15% sucrose dissolved in water) diet for 28 weeks. During this period, several experimental procedures were performed to evaluate the different components of MetS: morphological and blood pressure measurements, glucose tolerance determination, and the analysis of several plasma markers. At the end of the experimental period, animals developed central obesity, mild hypertension, pre-diabetes, and dyslipidemia with low HDL, high LDL, and an increase of triglyceride (TG) levels, thus reproducing the main components of human MetS. This chronic model allows new perspectives for understanding the underlying mechanisms in the progression of the disease, the detection of preclinical and clinical markers that allow the identification of patients at risk, or even the testing of new therapeutic approaches for the treatment of this complex pathology.


Subject(s)
Diet, High-Fat/methods , Metabolic Syndrome/etiology , Animals , Disease Models, Animal , Male , Metabolic Syndrome/pathology , Models, Theoretical , Rabbits
17.
PLoS One ; 12(5): e0178315, 2017.
Article in English | MEDLINE | ID: mdl-28542544

ABSTRACT

Metabolic syndrome (MetS) has become one of the main concerns for public health because of its link to cardiovascular disease. Murine models have been used to study the effect of MetS on the cardiovascular system, but they have limitations for studying cardiac electrophysiology. In contrast, the rabbit cardiac electrophysiology is similar to human, but a detailed characterization of the different components of MetS in this animal is still needed. Our objective was to develop and characterize a diet-induced experimental model of MetS that allows the study of cardiovascular remodeling and arrhythmogenesis. Male NZW rabbits were assigned to control (n = 15) or MetS group (n = 16), fed during 28 weeks with high-fat, high-sucrose diet. We measured weight, morphological characteristics, blood pressure, glycaemia, standard plasma biochemistry and the metabolomic profile at weeks 14 and 28. Liver histological changes were evaluated using hematoxylin-eosin staining. A mixed model ANOVA or unpaired t-test were used for statistical analysis (P<0.05). Weight, abdominal contour, body mass index, systolic, diastolic and mean arterial pressure increased in the MetS group at weeks 14 and 28. Glucose, triglycerides, LDL, GOT-AST, GOT/GPT, bilirubin and bile acid increased, whereas HDL decreased in the MetS group at weeks 14 and 28. We found a 40% increase in hepatocyte area and lipid vacuoles infiltration in the liver from MetS rabbits. Metabolomic analysis revealed differences in metabolites related to fatty acids, energetic metabolism and microbiota, compounds linked with cardiovascular disease. Administration of high-fat and high-sucrose diet during 28 weeks induced obesity, glucose intolerance, hypertension, non-alcoholic hepatic steatosis and metabolic alterations, thus reproducing the main clinical manifestations of the metabolic syndrome in humans. This experimental model should provide a valuable tool for studies into the mechanisms of cardiovascular problems related to MetS, with special relevance in the study of cardiovascular remodeling, arrhythmias and SCD.


Subject(s)
Disease Models, Animal , Metabolic Syndrome , Analysis of Variance , Animals , Blood Glucose , Diet, High-Fat , Dietary Sucrose , Eating , Glucose Intolerance , Hypertension/pathology , Hypertension/physiopathology , Liver/pathology , Male , Metabolic Syndrome/pathology , Metabolic Syndrome/physiopathology , Metabolome , Nuclear Magnetic Resonance, Biomolecular , Obesity/pathology , Obesity/physiopathology , Rabbits
18.
Clin Exp Pharmacol Physiol ; 43(11): 1062-1070, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27501159

ABSTRACT

JTV-519 is a 1,4-benzothiazepine derivative with multichannel effects that inhibits Ca2+ release from the sarcoplasmic reticulum and stabilizes the closed state of the ryanodine receptor, preventing myocardial damage and the induction of arrhythmias during Ca2+ overload. Mechanical stretch increases cellular Na+ inflow, activates the reverse mode of the Na+ /Ca2+ exchanger, and modifies Ca2+ handling and myocardial electrophysiology, favoring arrhythmogenesis. This study aims to determine whether JTV-519 modifies the stretch-induced manifestations of mechanoelectric feedback. The ventricular fibrillation (VF) modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts using epicardial multiple electrodes under control conditions (n=9) or during JTV-519 perfusion: 0.1 µmol/L (n=9) and 1 µmol/L (n=9). Spectral and mapping techniques were used to establish the baseline, stretch and post-stretch VF characteristics. JTV-519 slowed baseline VF and decreased activation complexity. These effects were dose-dependent (baseline VF dominant frequency: control=13.9±2.2 Hz; JTV 0.1 µmol/L=11.1±1.1 Hz, P<.01; JTV 1 µmol/L=6.6±1.1 Hz, P<.0001). The stretch-induced acceleration of VF (control=38.8%) was significantly reduced by JTV-519 0.1 µmol/L (19.8%) and abolished by JTV 1 µmol/L (-1.5%). During stretch, the VF activation complexity index was reduced in both JTV-519 series (control=1.60±0.15; JTV 0.1 µmol/L=1.13±0.3, P<.0001; JTV 1 µmol/L=0.57±0.21, P<.0001), and was independently related to VF dominant frequency (R=.82; P<.0001). The fifth percentile of the VF activation intervals, conduction velocity and wavelength entered the multiple linear regression model using dominant frequency as the dependent variable (R=-.84; P<.0001). In conclusion, JTV-519 slowed and simplified the baseline VF activation patterns and abolished the stretch-induced manifestations of mechanoelectric feedback.


Subject(s)
Feedback, Physiological/drug effects , Thiazepines/therapeutic use , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/physiopathology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channel Blockers/therapeutic use , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Feedback, Physiological/physiology , Pressoreceptors/drug effects , Pressoreceptors/physiology , Rabbits , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/physiology , Thiazepines/pharmacology , Treatment Outcome
19.
Cardiovasc Drugs Ther ; 29(3): 231-41, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26138210

ABSTRACT

PURPOSE: Mechanical stretch is an arrhythmogenic factor found in situations of cardiac overload or dyssynchronic contraction. Ranolazine is an antianginal agent that inhibits the late Na (+) current and has been shown to exert a protective effect against arrhythmias. The present study aims to determine whether ranolazine modifies the electrophysiological responses induced by acute mechanical stretch. METHODS: The ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts using epicardial multiple electrodes under control conditions (n = 9) or during perfusion of the late Na(+) current blocker ranolazine 5 µM (n = 9). Spectral and mapping techniques were used to establish the ventricular fibrillation dominant frequency, the spectral concentration and the complexity of myocardial activation in three situations: baseline, stretch and post-stretch. RESULTS: Ranolazine attenuated the increase in ventricular fibrillation dominant frequency produced by stretch (23.0 vs 40.4 %) (control: baseline =13.6 ± 2.6 Hz, stretch = 19.1 ± 3.1 Hz, p < 0.0001; ranolazine: baseline = 1.4 ± 1.8 Hz, stretch =14.0 ± 2.4 Hz, p < 0.05 vs baseline, p < 0.001 vs control). During stretch, ventricular fibrillation was less complex in the ranolazine than in the control series, as evaluated by the lesser percentage of complex maps and the greater spectral concentration of ventricular fibrillation. These changes were associated to an increase in the fifth percentile of VV intervals during ventricular fibrillation (50 ± 8 vs 38 ± 5 ms, p < .01) and in the wavelength of the activation (2.4 ± 0.3 vs 1.9 ± 0.2 cm, p < 0.001) under ranolazine. CONCLUSIONS: The late inward Na(+) current inhibitor ranolazine attenuates the electrophysiological effects responsible for the acceleration and increase in complexity of ventricular fibrillation produced by myocardial stretch.


Subject(s)
Biomechanical Phenomena/drug effects , Electrophysiological Phenomena/drug effects , Heart/drug effects , Ranolazine/pharmacology , Ranolazine/therapeutic use , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/physiopathology , Animals , Heart/physiology , Heart/physiopathology , In Vitro Techniques , Isolated Heart Preparation , Rabbits
20.
Rev. esp. cardiol. (Ed. impr.) ; 67(12): 993-998, dic. 2014.
Article in Spanish | IBECS | ID: ibc-130166

ABSTRACT

Introducción y objetivos. La duración anormal del intervalo QT o su dispersión se han asociado con un incremento en el riesgo de arritmias ventriculares. Se analiza el posible efecto arritmogénico de sus variaciones inducidas mediante enfriamiento y calentamiento local epicárdico. Métodos. En 10 corazones aislados de conejo, se modificó escalonadamente la temperatura de una región epicárdica del ventrículo izquierdo (22 a 42 °C), registrando simultáneamente los electrogramas en dicha zona y en otra del mismo ventrículo. En ritmo sinusal, se determinó el QT y el intervalo de recuperación de la activación y, mediante estimulación programada, la velocidad de conducción y la inducción de arritmias ventriculares. Resultados. En la zona modificada respecto al valor basal (37 °C), el QT se prolongó en hipotermia máxima (195 ± 47 frente a 149 ± 12 ms; p < 0,05) y se acortó en hipertermia (143 ± 18 frente a 152 ± 27 ms; p < 0,05). El intervalo de recuperación de la activación tuvo el mismo comportamiento. La velocidad de conducción disminuyó en hipotermia y aumentó en hipertermia. No hubo cambios en la otra zona. Se observaron respuestas repetitivas en cinco experimentos, pero no se encontró dependencia entre su aparición y las condiciones de hipotermia e hipertermia inducidas (p > 0,34). Conclusiones. En el modelo experimental empleado, las variaciones locales de la temperatura epicárdica modulan el intervalo QT, el intervalo de recuperación de la activación y la velocidad de conducción. Las heterogeneidades inducidas no han favorecido la inducción de arritmias ventriculares (AU)


Introduction and objectives. Abnormal QT interval durations and dispersions have been associated with increased risk of ventricular arrhythmias. The present study examines the possible arrhythmogenic effect of inducing QT interval variations through local epicardial cooling and warming. Methods. In 10 isolated rabbit hearts, the temperatures of epicardial regions of the left ventricle were modified in a stepwise manner (from 22 °C to 42 °C) with simultaneous electrogram recording in these regions and in others of the same ventricle. QT and activation-recovery intervals were determined during sinus rhythm, whereas conduction velocity and ventricular arrhythmia induction were determined during programmed stimulation. This multicenter retrospective study involved patients from the UMBRELLA national registry who underwent replacement due to defibrillator battery depletion. The incidence of ventricular arrhythmias was determined via remote monitoring. Risk factors for sustained ventricular arrhythmia after replacement were analyzed. Results. In the area modified from baseline temperature (37 °C), the QT (standard deviation) was prolonged with maximum hypothermia (195 [47] vs 149 [12] ms; P < .05) and shortened with hyperthermia (143 [18] vs 152 [27] ms; P < .05). The same behavior was displayed for the activation-recovery interval. The conduction velocity decreased with hypothermia and increased with hyperthermia. No changes were seen in the other unmodified area. Repetitive responses were seen in 5 experiments, but no relationship was found between their occurrence and hypothermia or hyperthermia (P > .34). Conclusions. In the experimental model employed, local variations in the epicardial temperature modulate the QT interval, activation-recovery interval, and conduction velocity. Induction of heterogeneities did not promote ventricular arrhythmia occurrence (AU)


Subject(s)
Animals , Male , Female , Long QT Syndrome/physiopathology , Long QT Syndrome/veterinary , Systole , Models, Animal , Electrophysiology/methods , Electrophysiology/trends , Cardiac Electrophysiology/methods , Cardiac Electrophysiology/trends , Electric Stimulation/methods , Animal Experimentation , Cardiac Pacing, Artificial/methods , Cardiac Pacing, Artificial/veterinary , Hypothermia/physiopathology , Hypothermia , Hypothermia/veterinary , Arrhythmias, Cardiac/veterinary , Arrhythmia, Sinus/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...