Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 88(2): 721-729, 2022.
Article in English | MEDLINE | ID: mdl-35694921

ABSTRACT

BACKGROUND: Olfactory dysfunction is one of the earliest signs of Alzheimer's disease (AD), highlighting its potential use as a biomarker for early detection. It has also been linked to progression from mild cognitive impairment (MCI) to dementia. OBJECTIVE: To study olfactory function and its associations with markers of AD brain pathology in non-demented mutation carriers of an autosomal dominant AD (ADAD) mutation and non-carrier family members. METHODS: We analyzed cross-sectional data from 16 non-demented carriers of the Presenilin1 E280A ADAD mutation (mean age [SD]: 40.1 [5.3], and 19 non-carrier family members (mean age [SD]: 36.0 [5.5]) from Colombia, who completed olfactory and cognitive testing and underwent amyloid and tau positron emission tomography (PET) imaging. RESULTS: Worse olfactory identification performance was associated with greater age in mutation carriers (r = -0.52 p = 0.037). In carriers, worse olfactory identification performance was related to worse MMSE scores (r = 0.55, p = 0.024) and CERAD delayed recall (r = 0.63, p = 0.007) and greater cortical amyloid-ß (r = -0.53, p = 0.042) and tau pathology burden (entorhinal: r = -0.59, p = 0.016; inferior temporal: r = -0.52, p = 0.038). CONCLUSION: Worse performance on olfactory identification tasks was associated with greater age, a proxy for disease progression in this genetically vulnerable ADAD cohort. In addition, this is the first study to report olfactory dysfunction in ADAD mutation carriers with diagnosis of MCI and its correlation with abnormal accumulation of tau pathology in the entorhinal region. Taken together, our findings suggest that olfactory dysfunction has promise as an early marker of brain pathology and future risk for dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Olfaction Disorders , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Biomarkers , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging/methods , Olfaction Disorders/etiology , Olfaction Disorders/genetics , Positron-Emission Tomography/methods , tau Proteins/genetics , tau Proteins/metabolism
2.
Sci Transl Med ; 13(601)2021 07 07.
Article in English | MEDLINE | ID: mdl-34233951

ABSTRACT

Triggers of innate immune signaling in the CNS of patients with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD) remain elusive. We report the presence of cytoplasmic double-stranded RNA (cdsRNA), an established trigger of innate immunity, in ALS-FTD brains carrying C9ORF72 intronic hexanucleotide expansions that included genomically encoded expansions of the G4C2 repeat sequences. The presence of cdsRNA in human brains was coincident with cytoplasmic TAR DNA binding protein 43 (TDP-43) inclusions, a pathologic hallmark of ALS/FTD. Introducing cdsRNA into cultured human neural cells induced type I interferon (IFN-I) signaling and death that was rescued by FDA-approved JAK inhibitors. In mice, genomically encoded dsRNAs expressed exclusively in a neuronal class induced IFN-I and death in connected neurons non-cell-autonomously. Our findings establish that genomically encoded cdsRNAs trigger sterile, viral-mimetic IFN-I induction and propagated death within neural circuits and may drive neuroinflammation and neurodegeneration in patients with ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , Animals , Brain/metabolism , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Humans , Mice , RNA, Double-Stranded
3.
medRxiv ; 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32587994

ABSTRACT

Post-infectious anosmias typically follow death of olfactory sensory neurons (OSNs) with a months-long recovery phase associated with parosmias. While profound anosmia is the leading symptom associated with COVID-19 infection, many patients regain olfactory function within days to weeks without distortions. Here, we demonstrate that sterile induction of anti-viral type I interferon signaling in the mouse olfactory epithelium is associated with diminished odor discrimination and reduced odor-evoked local field potentials. RNA levels of all class I, class II, and TAAR odorant receptors are markedly reduced in OSNs in a non-cell autonomous manner. We find that people infected with COVID-19 rate odors with lower intensities and have odor discrimination deficits relative to people that tested negative for COVID-19. Taken together, we propose that inflammatory-mediated loss of odorant receptor expression with preserved circuit integrity accounts for the profound anosmia and rapid recovery of olfactory function without parosmias caused by COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...