Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Oncol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533616

ABSTRACT

The one-carbon metabolism enzyme bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is among the most overexpressed proteins across tumors and is widely recognized as a promising anticancer target. While MTHFD2 is mainly described as a mitochondrial protein, a new nuclear function is emerging. Here, we observe that nuclear MTHFD2 protein levels and association with chromatin increase following ionizing radiation (IR) in an ataxia telangiectasia mutated (ATM)- and DNA-dependent protein kinase (DNA-PK)-dependent manner. Furthermore, repair of IR-induced DNA double-strand breaks (DSBs) is delayed upon MTHFD2 knockdown, suggesting a role for MTHFD2 in DSB repair. In support of this, we observe impaired recruitment of replication protein A (RPA), reduced resection, decreased IR-induced DNA repair protein RAD51 homolog 1 (RAD51) levels and impaired homologous recombination (HR) activity in MTHFD2-depleted cells following IR. In conclusion, we identify a key role for MTHFD2 in HR repair and describe an interdependency between MTHFD2 and HR proficiency that could potentially be exploited for cancer therapy.

2.
Science ; 376(6600): 1471-1476, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35737787

ABSTRACT

Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed ß,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.


Subject(s)
DNA Damage , DNA Glycosylases , DNA Repair , Oxidative Stress , Biocatalysis/drug effects , DNA Damage/drug effects , DNA Glycosylases/chemistry , DNA Glycosylases/drug effects , DNA Repair/drug effects , Enzyme Activation , Glycine/chemistry , Humans , Ligands , Oxidative Stress/genetics , Phenylalanine/chemistry , Substrate Specificity
3.
Front Immunol ; 13: 884185, 2022.
Article in English | MEDLINE | ID: mdl-35634333

ABSTRACT

Immune responses in human tissues rely on the concerted action of different cell types. Inter-cellular communication shapes both the function of the multicellular interaction networks and the fate of the individual cells that comprise them. With the advent of new methods to profile and experimentally perturb primary human tissues, we are now in a position to systematically identify and mechanistically dissect these cell-cell interactions and their modulators. Here, we introduce the concept of multicellular hubs, functional modules of immune responses in tissues. We outline a roadmap to discover multicellular hubs in human tissues and discuss how emerging technologies may further accelerate progress in this field.


Subject(s)
Cell Communication , Communication , Humans
4.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34450029

ABSTRACT

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Bone Morphogenetic Proteins/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Compartmentation , Cell Line, Tumor , Chemokines/metabolism , Cohort Studies , Colorectal Neoplasms/genetics , DNA Mismatch Repair/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunity , Inflammation/pathology , Monocytes/pathology , Myeloid Cells/pathology , Neutrophils/pathology , Stromal Cells/metabolism , T-Lymphocytes/metabolism , Transcription, Genetic
5.
Nucleic Acids Res ; 48(21): 12234-12251, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33211885

ABSTRACT

Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.


Subject(s)
Colonic Neoplasms/drug therapy , DNA Glycosylases/genetics , DNA, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Poly (ADP-Ribose) Polymerase-1/immunology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/mortality , DNA Damage , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/metabolism , DNA Repair/drug effects , DNA Replication/drug effects , DNA, Neoplasm/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Guanine/analogs & derivatives , Guanine/metabolism , HCT116 Cells , Humans , Mice , Mice, Nude , Molecular Targeted Therapy , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction , Survival Analysis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
6.
Front Immunol ; 10: 1485, 2019.
Article in English | MEDLINE | ID: mdl-31316521

ABSTRACT

Adoptive transfer of T cells transgenic for tumor-reactive T-cell receptors (TCR) is an attractive immunotherapeutic approach. However, clinical translation is so far limited due to challenges in the identification of suitable target antigens as well as TCRs that are concurrent safe and efficient. Definition of key characteristics relevant for effective and specific tumor rejection is essential to improve current TCR-based adoptive T-cell immunotherapies. We here characterized in-depth two TCRs derived from the human leukocyte antigen (HLA)-mismatched allogeneic repertoire targeting two different myeloperoxidase (MPO)-derived peptides presented by the same HLA-restriction element side by side comprising state of the art biochemical and cellular in vitro, in vivo, and in silico experiments. In vitro experiments reveal comparable functional avidities, off-rates, and cytotoxic activities for both TCRs. However, we observed differences especially with respect to cytokine secretion and cross-reactivity as well as in vivo activity. Biochemical and in silico analyses demonstrate different binding qualities of MPO-peptides to the HLA-complex determining TCR qualities. We conclude from our biochemical and in silico analyses of peptide-HLA-binding that rigid and high-affinity binding of peptides is one of the most important factors for isolation of TCRs with high specificity and tumor rejection capacity from the MHC-mismatched repertoire. Based on our results, we developed a workflow for selection of such TCRs with high potency and safety profile suitable for clinical translation.


Subject(s)
HLA Antigens/immunology , Peptides/immunology , Peroxidase/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cell Line , Cytokines/immunology , Humans , Major Histocompatibility Complex/immunology , Mice, Transgenic , Models, Molecular , Neoplasms/immunology , Neoplasms/therapy
7.
Life Sci Alliance ; 2(2)2019 04.
Article in English | MEDLINE | ID: mdl-30877233

ABSTRACT

Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells' specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model.


Subject(s)
Cell Engineering/methods , Gene Editing/methods , Neoplasms/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology , Animals , CRISPR-Associated Protein 9/genetics , Cell Line , Genes, T-Cell Receptor alpha/genetics , Genetic Vectors , Humans , Immunotherapy, Adoptive/methods , Mice , Mice, Inbred NOD , Mice, Transgenic , Neoplasms/therapy , Tissue Donors , Transduction, Genetic , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...