Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580646

ABSTRACT

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Subject(s)
Codon, Nonsense , RNA, Transfer , Codon, Nonsense/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Codon/genetics , Ribosomes/metabolism , Genetic Therapy , Protein Biosynthesis/genetics , Codon, Terminator
2.
Nature ; 618(7966): 842-848, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258671

ABSTRACT

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Subject(s)
Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator , RNA, Transfer , Animals , Mice , Amino Acids/genetics , Codon, Nonsense/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , RNA, Transfer/administration & dosage , RNA, Transfer/genetics , RNA, Transfer/therapeutic use , Base Pairing , Anticodon/genetics , Protein Biosynthesis , Nasal Mucosa/metabolism , Ribosome Profiling
3.
Nat Commun ; 12(1): 3850, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158503

ABSTRACT

Three stop codons (UAA, UAG and UGA) terminate protein synthesis and are almost exclusively recognized by release factors. Here, we design de novo transfer RNAs (tRNAs) that efficiently decode UGA stop codons in Escherichia coli. The tRNA designs harness various functionally conserved aspects of sense-codon decoding tRNAs. Optimization within the TΨC-stem to stabilize binding to the elongation factor, displays the most potent effect in enhancing suppression activity. We determine the structure of the ribosome in a complex with the designed tRNA bound to a UGA stop codon in the A site at 2.9 Å resolution. In the context of the suppressor tRNA, the conformation of the UGA codon resembles that of a sense-codon rather than when canonical translation termination release factors are bound, suggesting conformational flexibility of the stop codons dependent on the nature of the A-site ligand. The systematic analysis, combined with structural insights, provides a rationale for targeted repurposing of tRNAs to correct devastating nonsense mutations that introduce a premature stop codon.


Subject(s)
Codon, Nonsense/genetics , Codon, Terminator/genetics , Escherichia coli/genetics , Protein Biosynthesis/genetics , RNA, Transfer/genetics , Ribosomes/genetics , Base Sequence , Binding Sites/genetics , Cryoelectron Microscopy , Escherichia coli/metabolism , Models, Molecular , Nucleic Acid Conformation , Peptide Termination Factors/genetics , Peptide Termination Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Ribosomes/metabolism , Ribosomes/ultrastructure , Suppression, Genetic
4.
Int J Mol Sci ; 20(9)2019 May 11.
Article in English | MEDLINE | ID: mdl-31083552

ABSTRACT

Engineering aminoacyl-tRNA synthetases (aaRSs) provides access to the ribosomal incorporation of noncanonical amino acids via genetic code expansion. Conventional targeted mutagenesis libraries with 5-7 positions randomized cover only marginal fractions of the vast sequence space formed by up to 30 active site residues. This frequently results in selection of weakly active enzymes. To overcome this limitation, we use computational enzyme design to generate a focused library of aaRS variants. For aaRS enzyme redesign, photocaged ortho-nitrobenzyl tyrosine (ONBY) was chosen as substrate due to commercial availability and its diverse applications. Diversifying 17 first- and second-shell sites and performing conventional aaRS positive and negative selection resulted in a high-activity aaRS. This MjTyrRS variant carries ten mutations and outperforms previously reported ONBY-specific aaRS variants isolated from traditional libraries. In response to a single in-frame amber stop codon, it mediates the in vivo incorporation of ONBY with an efficiency matching that of the wild type MjTyrRS enzyme acylating cognate tyrosine. These results exemplify an improved general strategy for aaRS library design and engineering.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Computational Biology/methods , Gene Library , Light , Tyrosine/metabolism , Catalytic Domain , Enzyme Stability , Fluorescence , Green Fluorescent Proteins/metabolism , Mutation/genetics , Temperature
5.
Life (Basel) ; 6(1)2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26797637

ABSTRACT

Transfer RNAs (tRNAs) are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage-either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE) in the 5'- and 3'-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.

SELECTION OF CITATIONS
SEARCH DETAIL
...