Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612799

ABSTRACT

EGFR exon 20 (EGFR Ex20) insertion mutations in non-small cell lung cancer (NSCLC) are insensitive to traditional EGFR tyrosine kinase inhibitors (TKIs). Mobocertinib is the only approved TKI specifically designed to target EGFR Ex20. We performed an international, real-world safety and efficacy analysis on patients with EGFR Ex20-positive NSCLC enrolled in a mobocertinib early access program. We explored the mechanisms of resistance by analyzing postprogression biopsies, as well as cross-resistance to amivantamab. Data from 86 patients with a median age of 67 years and a median of two prior lines of treatment were analyzed. Treatment-related adverse events (TRAEs) occurred in 95% of patients. Grade ≥3 TRAEs were reported in 38% of patients and included diarrhea (22%) and rash (8%). In 17% of patients, therapy was permanently discontinued, and two patients died due to TRAEs. Women were seven times more likely to discontinue treatment than men. In the overall cohort, the objective response rate to mobocertinib was 34% (95% CI, 24-45). The response rate in treatment-naïve patients was 27% (95% CI, 8-58). The median progression-free and overall survival was 5 months (95% CI, 3.5-6.5) and 12 months (95% CI, 6.8-17.2), respectively. The intracranial response rate was limited (13%), and one-third of disease progression cases involved the brain. Mobocertinib also showed antitumor activity following EGFR Ex20-specific therapy and vice versa. Potential mechanisms of resistance to mobocertinib included amplifications in MET, PIK3CA, and NRAS. Mobocertinib demonstrated meaningful efficacy in a real-world setting but was associated with considerable gastrointestinal and cutaneous toxicity.


Subject(s)
Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Male , Humans , Female , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , Exons
2.
Mol Oncol ; 18(2): 415-430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104968

ABSTRACT

Tyrosine-protein kinase (janus kinase; JAK)-signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib-resistant cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM-JAK2) consisting of the N-terminal FERM domain directly fused to the C-terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the molecular level, FERM-JAK2 is able to directly bind and activate STAT5 in the absence of cytokine receptors. Furthermore, phosphorylation of activation-loop tyrosines is dispensable for FERM-JAK2-mediated STAT5 activation and cellular transformation, in contrast to JAK2-V617F. As a result, FERM-JAK2 is highly resistant to several ATP-competitive JAK2 inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A murine model of FERM-JAK2 leukemogenesis showed an accelerated MPN phenotype with pronounced splenomegaly. Notably, most current protocols for the monitoring of emerging JAK variants are unable to detect FERM-JAK2, highlighting the urgent need for implementing next-generation sequencing approaches in MPN patients receiving ruxolitinib.


Subject(s)
Antineoplastic Agents , STAT5 Transcription Factor , Animals , Humans , Mice , Janus Kinase 2/metabolism , Janus Kinases/metabolism , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
3.
Front Oncol ; 12: 875117, 2022.
Article in English | MEDLINE | ID: mdl-35646639

ABSTRACT

The NPM-ALK fusion kinase is expressed in 60% of systemic anaplastic large-cell lymphomas (ALCL). A Nuclear Interaction Partner of ALK (NIPA) was identified as a binding partner of NPM-ALK. To identify the precise role of NIPA for NPM-ALK-driven lymphomagenesis, we investigated various NPM-ALK+ cell lines and mouse models. Nipa deletion in primary mouse embryonic fibroblasts resulted in reduced transformation ability and colony formation upon NPM-ALK expression. Downregulating NIPA in murine NPM-ALK+ Ba/F3 and human ALCL cells decreased their proliferation ability and demonstrated synergistic effects of ALK inhibition and NIPA knockdown. Comprehensive in vivo analyses using short- and long-latency transplantation mouse models with NPM-ALK+ bone marrow (BM) revealed that Nipa deletion inhibited NPM-ALK-induced tumorigenesis with prolonged survival and reduced spleen colonies. To avoid off-target effects, we combined Nipa deletion and NPM-ALK expression exclusively in T cells using a lineage-restricted murine ALCL-like model resembling human disease: control mice died from neoplastic T-cell infiltration, whereas mice transplanted with Lck-CreTG/wtNipaflox/flox NPM-ALK+ BM showed significantly prolonged survival. Immunophenotypic analyses indicated a characteristic ALCL-like phenotype in all recipients but revealed fewer "stem-cell-like" features of Nipa-deficient lymphomas compared to controls. Our results identify NIPA as a crucial player in effective NPM-ALK-driven ALCL-like disease in clinically relevant murine and cell-based models.

SELECTION OF CITATIONS
SEARCH DETAIL
...