Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Fungal Genet Biol ; 46(6-7): 450-60, 2009.
Article in English | MEDLINE | ID: mdl-19298860

ABSTRACT

Cdc42, a member of the Rho-family small GTP-binding proteins, is a pivotal signaling switch that cycles between active GTP-bound and inactive GDP-bound forms, controlling actin cytoskeleton organization and cell polarity. In this report, we show that MgCdc42, a Cdc42 ortholog in Magnaporthe grisea, is required for its plant penetration. Consequently, the deletion mutants show dramatically decreased virulence to rice due to the arrest of penetration and infectious growth, which may be attributed to the defect of turgor and superoxide generation during the appressorial development in Mgcdc42 deletion mutants. In addition, the mutants also exhibit pleotropic defects including gherkin-shaped conidia, delayed germination as well as decreased sporulation. Furthermore, dominant negative mutation leads to a similar phenotype to that of the deletion mutants, lending further support to the conclusion that MgCdc42 is required for the penetration and virulence of M. grisea.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/enzymology , Magnaporthe/pathogenicity , Plant Diseases/microbiology , cdc42 GTP-Binding Protein/metabolism , Fungal Proteins/genetics , Hordeum/microbiology , Magnaporthe/genetics , Magnaporthe/physiology , Oryza/microbiology , Sequence Deletion , Virulence , cdc42 GTP-Binding Protein/genetics
2.
Appl Environ Microbiol ; 72(2): 986-93, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16461639

ABSTRACT

Magnaporthe grisea, a destructive ascomycetous pathogen of rice, secretes cell wall-degrading enzymes into a culture medium containing purified rice cell walls as the sole carbon source. From M. grisea grown under the culture conditions described here, we have identified an expressed sequenced tag, XYL-6, a gene that is also expressed in M. grisea-infected rice leaves 24 h postinoculation with conidia. This gene encodes a protein about 65% similar to endo-beta-1,4-D-glycanases within glycoside hydrolase family GH10. A M. grisea knockout mutant for XYL-6 was created, and it was shown to be as virulent as the parent strain in infecting the rice host. The proteins secreted by the parent strain and by the xyl-6Delta mutant were each fractionated by liquid chromatography, and the collected fractions were assayed for endo-beta-1,4-D-glucanase or endo-beta-1,4-D-xylanase activities. Two protein-containing peaks with endo-beta-1,4-D-xylanase activity secreted by the parent strain are not detectable in the column eluant of the proteins secreted by the mutant. The two endoxylanases (XYL-6alpha and XYL-6beta) from the parent were each purified to homogeneity. N-terminal amino acid sequencing indicated that XYL-6alpha is a fragment of XYL-6beta and that XYL-6beta is identical to the deduced protein sequence encoded by the XYL-6 gene. Finally, XYL-6 was introduced into Pichia pastoris for heterologous expression, which resulted in the purification of a fusion protein, XYL-6H, from the Pichia pastoris culture filtrate. XYL-6H is active in cleaving arabinoxylan. These experiments unequivocally established that the XYL-6 gene encodes a secreted endo-beta-1,4-D-xylanase.


Subject(s)
Endo-1,4-beta Xylanases/genetics , Magnaporthe/enzymology , Magnaporthe/genetics , Amino Acid Sequence , Base Sequence , DNA, Complementary/genetics , DNA, Fungal/genetics , Endo-1,4-beta Xylanases/isolation & purification , Endo-1,4-beta Xylanases/metabolism , Expressed Sequence Tags , Gene Expression , Gene Targeting , Genes, Fungal , Magnaporthe/pathogenicity , Molecular Sequence Data , Mutation , Oryza/microbiology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid
3.
Annu Rev Plant Biol ; 55: 109-39, 2004.
Article in English | MEDLINE | ID: mdl-15377216

ABSTRACT

Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that was first identified in 1978 as a quantitatively minor component of suspension-cultured sycamore cell walls. Subsequent studies have shown that RG-II is present in the primary walls of angiosperms, gymnosperms, lycophytes, and pteridophytes and that its glycosyl sequence is conserved in all vascular plants examined to date. This is remarkable because RG-II is composed of at least 12 different glycosyl residues linked together by more than 20 different glycosidic linkages. However, only a few of the genes and proteins required for RG-II biosynthesis have been identified. The demonstration that RG-II exists in primary walls as a dimer that is covalently cross-linked by a borate diester was a major advance in our understanding of the structure and function of this pectic polysaccharide. Dimer formation results in the cross-linking of the two homogalacturonan chains upon which the RG-II molecules are constructed and is required for the formation of a three-dimensional pectic network in muro. This network contributes to the mechanical properties of the primary wall and is required for normal plant growth and development. Indeed, changes in wall properties that result from decreased borate cross-linking of pectin may lead to many of the symptoms associated with boron deficiency in plants.


Subject(s)
Cycadopsida/metabolism , Magnoliopsida/metabolism , Pectins/chemistry , Cycadopsida/genetics , Genetic Variation , Magnoliopsida/genetics , Pectins/genetics , Polysaccharides/chemistry
4.
Planta ; 219(1): 147-57, 2004 May.
Article in English | MEDLINE | ID: mdl-14991405

ABSTRACT

Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In mur1 RG-II a non-reducing terminal 2- O-methyl l-galactosyl residue and a 3,4-linked l-galactosyl residue replace the non-reducing terminal 2- O-methyl l-fucosyl residue and the 3,4-linked l-fucosyl residue, respectively, that are present in wild-type RG-II. Furthermore, we found that a terminal non-reducing l-galactosyl residue, rather than the previously reported d-galactosyl residue, is present on the 2- O-methyl xylose-containing side chain of RG-II in both wild type and mur1 plants. Approximately 95% of the RG-II from wild type and mur1 plants is solubilized as a high-molecular-weight (>100 kDa) complex, by treating walls with aqueous potassium phosphate. The molecular mass of RG-II in this complex was reduced to 5-10 kDa by treatment with endopolygalacturonase, providing additional evidence that RG-II is covalently linked to homogalacturonan. The results of this study provide additional information on the structure of RG-II and the role of this pectic polysaccharide in the plant cell wall.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Fucose/analysis , Galactose/analysis , Mutation , Pectins/chemistry , Arabidopsis/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Cell Wall/chemistry , Cells, Cultured , Fucose/analogs & derivatives , Galactose/analogs & derivatives , Hydrogen-Ion Concentration , Pectins/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Spectrometry, Mass, Electrospray Ionization
5.
Plant Physiol ; 134(1): 339-51, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14671014

ABSTRACT

Borate ester cross-linking of the cell wall pectic polysaccharide rhamnogalacturonan II (RG-II) is required for the growth and development of angiosperms and gymnosperms. Here, we report that the amounts of borate cross-linked RG-II present in the sporophyte primary walls of members of the most primitive extant vascular plant groups (Lycopsida, Filicopsida, Equisetopsida, and Psilopsida) are comparable with the amounts of RG-II in the primary walls of angiosperms. By contrast, the gametophyte generation of members of the avascular bryophytes (Bryopsida, Hepaticopsida, and Anthocerotopsida) have primary walls that contain small amounts (approximately 1% of the amounts of RG-II present in angiosperm walls) of an RG-II-like polysaccharide. The glycosyl sequence of RG-II is conserved in vascular plants, but these RG-IIs are not identical because the non-reducing L-rhamnosyl residue present on the aceric acid-containing side chain of RG-II of all previously studied plants is replaced by a 3-O-methyl rhamnosyl residue in the RG-IIs isolated from Lycopodium tristachyum, Ceratopteris thalictroides, Platycerium bifurcatum, and Psilotum nudum. Our data indicate that the amount of RG-II incorporated into the walls of plants increased during the evolution of vascular plants from their bryophyte-like ancestors. Thus, the acquisition of a boron-dependent growth habit may be correlated with the ability of vascular plants to maintain upright growth and to form lignified secondary walls. The conserved structures of pteridophyte, lycophyte, and angiosperm RG-IIs suggests that the genes and proteins responsible for the biosynthesis of this polysaccharide appeared early in land plant evolution and that RG-II has a fundamental role in wall structure.


Subject(s)
Biological Evolution , Pectins/metabolism , Plants/genetics , Plants/metabolism , Borates/analysis , Boron/analysis , Bryophyta/genetics , Bryophyta/metabolism , Carbohydrate Sequence , Cell Wall/metabolism , Ferns/genetics , Ferns/metabolism , Lycopodiaceae/genetics , Lycopodiaceae/metabolism , Mass Spectrometry , Molecular Sequence Data , Pectins/chemistry , Selaginellaceae/genetics , Selaginellaceae/metabolism
6.
Plant Physiol ; 131(4): 1602-12, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12692319

ABSTRACT

The monoclonal antibody, CCRC-M1, which recognizes a fucose (Fuc)-containing epitope found principally in the cell wall polysaccharide xyloglucan, was used to determine the distribution of this epitope throughout the mur1 mutant of Arabidopsis. Immunofluorescent labeling of whole seedlings revealed that mur1 root hairs are stained heavily by CCRC-M1, whereas the body of the root remains unstained or only lightly stained. Immunogold labeling showed that CCRC-M1 labeling within the mur1 root is specific to particular cell walls and cell types. CCRC-M1 labels all cell walls at the apex of primary roots 2 d and older and the apices of mature lateral roots, but does not bind to cell walls in lateral root initials. Labeling with CCRC-M1 decreases in mur1 root cells that are undergoing rapid elongation growth such that, in the mature portions of primary and lateral roots, only the walls of pericycle cells and the outer walls of epidermal cells are labeled. Growth of the mutant on Fuc-containing media restores wild-type labeling, where all cell walls are labeled by the CCRC-M1 antibody. No labeling was observed in mur1 hypocotyls, shoots, or leaves; stipules are labeled. CCRC-M1 does label pollen grains within anthers and pollen tube walls. These results suggest the Fuc destined for incorporation into xyloglucan is synthesized using one or the other or both isoforms of GDP-D-mannose 4,6-dehydratase, depending on the cell type and/or developmental state of the cell.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/chemistry , Arabidopsis/genetics , Cell Wall/chemistry , Fucose/analysis , Glucans , Mutation , Polysaccharides/analysis , Xylans , Arabidopsis/cytology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Structures/chemistry , Plant Structures/cytology , Plant Structures/metabolism , Seedlings/chemistry , Seedlings/cytology , Seedlings/genetics
7.
Plant J ; 34(3): 327-38, 2003 May.
Article in English | MEDLINE | ID: mdl-12713539

ABSTRACT

A basic, 51 kDa protein was purified from suspension-cultured tomato and shown to inhibit the hydrolytic activity of a xyloglucan-specific endoglucanase (XEG) from the fungus Aspergillus aculeatus. The tomato (Lycopersicon esculentum) protein, termed XEG inhibitor protein (XEGIP), inhibits XEG activity by forming a 1 : 1 protein:protein complex with a Ki approximately 0.5 nm. To our knowledge, XEGIP is the first reported proteinaceous inhibitor of any endo-beta-1,4-glucanase, including the cellulases. The cDNA encoding XEGIP was cloned and sequenced. Database analysis revealed homology with carrot extracellular dermal glycoprotein (EDGP), which has a putative role in plant defense. XEGIP also has sequence similarity to ESTs from a broad range of plant species, suggesting that XEGIP-like genes are widely distributed in the plant kingdom. Although Southern analysis detected only a single XEGIP gene in tomato, at least five other XEGIP-like tomato sequences have been identified. Similar small families of XEGIP-like sequences are present in other plants, including Arabidopsis. XEGIP also has some sequence similarity to two previously characterized proteins, basic globulin 7S protein from soybean and conglutin gamma from lupin. Several amino acids in the XEGIP sequence, notably 8 of the 12 cysteines, are generally conserved in all the XEGIP-like proteins we have encountered, suggesting a fundamental structural similarity. Northern analysis revealed that XEGIP is widely expressed in tomato vegetative tissues and is present in expanding and maturing fruit, but is downregulated during ripening.


Subject(s)
Cellulase/antagonists & inhibitors , Glucans , Glycoproteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/genetics , Xylans , Amino Acid Sequence , Cells, Cultured , Cellulase/metabolism , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Glycoproteins/metabolism , Glycoproteins/pharmacology , Solanum lycopersicum/metabolism , Molecular Sequence Data , Plant Proteins/metabolism , Plant Proteins/pharmacology , Polysaccharides/metabolism , Protein Binding , Protein Interaction Mapping , Sequence Analysis, DNA , Sequence Homology, Amino Acid
8.
Carbohydr Res ; 338(4): 341-52, 2003 Feb 07.
Article in English | MEDLINE | ID: mdl-12559732

ABSTRACT

A 2-O-methylfucosyl-containing heptasaccharide was released from red wine rhamnogalacturonan II (RG-II) by acid hydrolysis of the glycosidic linkage of the aceryl acid residue (AceA) and purified to homogeneity by size-exclusion and high-performance anion-exchange chromatographies. The primary structure of the heptasaccharide was determined by glycosyl-residue and glycosyl-linkage composition analyses, ESIMS, and by 1H and 13C NMR spectroscopy. The NMR data indicated that the pyranose ring of the 2,3-linked L-arabinosyl residue is conformationally flexible. The L-Arap residue was confirmed to be alpha-linked by NMR analysis of a tetraglycosyl-glycerol fragment, [alpha-L-Arap-(1-->4)-beta-D-Galp-(1-->2)-alpha-L-AcefA-(1-->3)-beta-L-Rhap-(1-->3)-Gro], generated by Smith degradation of RG-II. Our data together with the results of a previous study,(1) establish that the 2-O-Me Fuc-containing nonasaccharide side chain of wine RG-II has the structure (Api [triple bond] apiose): [see structure]. Data are presented to show that in Arabidopsis RG-II the predominant 2-O-MeFuc-containing side chain is a mono-O-acetylated heptasaccharide that lacks the non-reducing terminal beta-L-Araf and the alpha-L-Rhap residue attached to the O-3 of Arap, both of which are present on the wine nonasaccharide.


Subject(s)
Fucose/analogs & derivatives , Fucose/chemistry , Pectins/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Molecular Sequence Data , Oligosaccharides/chemistry , Wine/analysis
9.
Plant Cell ; 14(6): 1329-45, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12084830

ABSTRACT

A characteristic plant response to microbial attack is the production of endo-beta-1,3-glucanases, which are thought to play an important role in plant defense, either directly, through the degradation of beta-1,3/1,6-glucans in the pathogen cell wall, or indirectly, by releasing oligosaccharide elicitors that induce additional plant defenses. We report the sequencing and characterization of a class of proteins, termed glucanase inhibitor proteins (GIPs), that are secreted by the oomycete Phytophthora sojae, a pathogen of soybean, and that specifically inhibit the endoglucanase activity of their plant host. GIPs are homologous with the trypsin class of Ser proteases but are proteolytically nonfunctional because one or more residues of the essential catalytic triad is absent. However, specific structural features are conserved that are characteristic of protein-protein interactions, suggesting a mechanism of action that has not been described previously in plant pathogen studies. We also report the identification of two soybean endoglucanases: EGaseA, which acts as a high-affinity ligand for GIP1; and EGaseB, with which GIP1 does not show any association. In vitro, GIP1 inhibits the EGaseA-mediated release of elicitor-active glucan oligosaccharides from P. sojae cell walls. Furthermore, GIPs and soybean endoglucanases interact in vivo during pathogenesis in soybean roots. GIPs represent a novel counterdefensive weapon used by plant pathogens to suppress a plant defense response and potentially function as important pathogenicity determinants.


Subject(s)
Dextranase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Primers , Enzyme Inhibitors/chemistry , Models, Biological , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Sequence Alignment , Sequence Homology, Amino Acid , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...