Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Stapp Car Crash J ; 67: 112-170, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38662623

ABSTRACT

Frontal-crash sled tests were conducted to assess submarining protection and abdominal injury risk for midsized male occupants in the rear seat of modern vehicles. Twelve sled tests were conducted in four rear-seat vehicle-bucks with twelve post-mortem human surrogates (PMHS). Select kinematic responses and submarining incidence were compared to previously observed performance of the Hybrid III 50th-percentile male and THOR-50M ATDs (Anthropomorphic Test Devices) in matched sled tests conducted as part of a previous study. Abdominal pressure was measured in the PMHS near each ASIS (Anterior Superior Iliac Spine), in the inferior vena cava, and in the abdominal aorta. Damage to the abdomen, pelvis, and lumbar spine of the PMHS was also identified. In total, five PMHS underwent submarining. Four PMHS, none of which submarined, sustained pelvis fractures and represented the heaviest of the PMHS tested. Submarining of the PMHS occurred in two out of four vehicles. In the matched tests, the Hybrid III never underwent submarining while the THOR-50M submarined in three out of four vehicles. Submarining occurred in vehicles having both conventional and advanced (pretensioner and load limiter) restraints. The dominant factors associated with submarining were related to seat pan geometry. While the THOR-50M was not always an accurate tool for predicting submarining in the PMHS, the Hybrid III could not predict submarining at all. The results of this study identify substantive gaps in frontal-crash occupant protection in the rear seat for midsized males and elucidates the need for additional research for rear-seat occupant protection for all occupants.

2.
Traffic Inj Prev ; 24(sup1): S9-S15, 2023.
Article in English | MEDLINE | ID: mdl-37267011

ABSTRACT

OBJECTIVE: The objectives of this study were to evaluate computationally efficient small female (54.1 kg, 149.9 cm) and midsize male (78.4 kg, 174.9 cm) models with active muscles using volunteer sled test data in a frontal-oblique loading direction and check their response in crash mitigating maneuvers using field test data. METHODS: The Global Human Body Models Consortium small female (F05-OS+Active) and midsize male (M50-OS+Active) simplified occupant models with active musculature were used in this study. The data from a total of 48 previously published sled test experiments were used to simulate a total of 16 simulations. The experimental study recorded occupant responses of six small female and six midsize male volunteers (n = 12 total) in two muscle conditions (relaxed and braced) at two acceleration pulses representing pre-crash braking (1.0 g) and a low-speed impact (2.5 g). Each model's kinematics and reaction forces were compared with experimental data. Along with sled test simulations, both of these models were simulated in abrupt braking, lane change, and turn and brake events using literature data. A total of 36 field test simulations were carried out. A CORA analysis was carried out using reaction load and displacement time-history data for sled test simulations and head CG displacement time-history was used for field test simulations. RESULTS: The occupant peak forward and lateral excursion results of both active models reasonably matched the volunteer data in the low-speed sled test simulations for both pulse severities. The differences between the active and control models were statistically significant (p-value < 0.05) based on the results of Wilcoxon signed-rank tests using peak forward and lateral excursion data. The average CORA scores calculated for the sled test (sled test: M50-OS+Active= 0.543, male control= 0.471, F05-OS+Active= 0.621, female control= 0.505) and field test (M50-OS+Active= 0.836, male control= 0.466, F05-OS+Active= 0.832, female control= 0.787) simulations were higher for active models than control. CONCLUSIONS: The responses of the F05-OS+Active and M50-OS+Active models were better than control models based on overall CORA scores calculated using both sled and field tests. The results highlight their ability to predict occupant kinematics in crash-mitigating maneuvers and low-speed impacts in the frontal, lateral and frontal-oblique directions.


Subject(s)
Acceleration , Accidents, Traffic , Humans , Male , Female , Muscles/physiology , Biomechanical Phenomena , Human Body
3.
Traffic Inj Prev ; 24(sup1): S41-S46, 2023.
Article in English | MEDLINE | ID: mdl-37267018

ABSTRACT

OBJECTIVE: The purpose of this study was to provide a whole-body biofidelity assessment of the Hybrid III (HIII) and THOR 50th percentile male anthropomorphic test devices (ATDs) during frontal sled tests, incorporating data from kinematics, chest deflection, and test buck reaction load cells. Additionally, the accuracy of the injury risk prediction capabilities for each ATD was evaluated against injuries observed in matched postmortem human surrogate (PMHS) tests. METHODS: Sled tests, designed to simulate a United States New Car Assessment Program (US-NCAP) frontal test, were conducted using the HIII, THOR, and 8 approximately 50th percentile male PMHS under 3 restraint conditions. The test buck was instrumented with load cells on the steering column, knee bolster supports, and foot supports. ATD and PMHS reaction force-time histories were quantitatively compared using the ISO/TS-18571 objective rating metric. Previously published biofidelity analyses of kinematic and chest deflection data from the same tests were combined with the reaction force analyses to perform an overall assessment of the comparative biofidelity of each ATD. Injury risk predictions from existing HIII and proposed THOR injury risk curves for the US-NCAP were compared to observed injuries. RESULTS: For the reaction forces, the HIII and THOR had similar levels of biofidelity on average, except for 2 locations. The HIII produced more biofidelic knee bolster support forces, and the THOR lap belt forces were more biofidelic. The comparative biofidelity of the ATDs also varied by body region. The THOR head response was more biofidelic, whereas the HIII thorax and lower extremity responses had higher biofidelity. When all body regions were pooled, the HIII was more biofidelic, but differences between ATDs were generally small. Both ATDs were able to predict the observed injuries, except for the HIII chest, HIII neck, and THOR neck, all of which underpredicted PMHS injury outcomes. CONCLUSIONS: This study revealed that biofidelity assessed through response time histories and accuracy of injury risk predictions do not always align. Specifically, the HIII had marginally better time history biofidelity, whereas the THOR had better injury prediction. However, not all THOR responses could be fully assessed, so more work is needed to assess the THOR in complex loading environments.


Subject(s)
Accidents, Traffic , Neck , Humans , Male , Cadaver , Neck/physiology , Thorax/physiology , Restraint, Physical , Biomechanical Phenomena , Manikins
4.
J Biomech ; 156: 111670, 2023 07.
Article in English | MEDLINE | ID: mdl-37352737

ABSTRACT

The material and morphometric properties of trabecular bone have been studied extensively in bones bearing significant weight, such as the appendicular long bones and spine. Less attention has been devoted to the ribs, where quantification of material properties is vital to understanding thoracic injury. The objective of this study was to quantify the compressive material properties of human rib trabecular bone and assess the effects of loading rate, age, and morphology on the material properties. Material properties were quantified via uniaxial compression tests performed on trabecular bone samples at two loading rates: 0.005 s-1 and 0.5 s-1. Morphometric parameters of each sample were quantified before testing using micro-computed tomography. Rib trabecular bone material properties were lower on average compared to trabecular bone from other anatomical locations. Morphometric parameters indicated an anisotropic structure with low connectivity and a sparser density of trabeculae in the rib compared to other locations. No significant differences in material properties were observed between the tested loading rates. Material properties were only significantly correlated with age at the 0.005 s-1 loading rate, and no morphometric parameter was significantly correlated with age. Trabecular separation and thickness were most strongly correlated with the material properties, indicating the sparser trabecular matrix likely contributed to the lower material property values compared to other sites. The novel trabecular bone material properties reported in this study can be used to improve the thoracic response and injury prediction of computational models.


Subject(s)
Cancellous Bone , Spine , Humans , X-Ray Microtomography , Cancellous Bone/diagnostic imaging , Ribs/diagnostic imaging , Pressure , Bone Density
5.
Traffic Inj Prev ; 23(sup1): S44-S49, 2022.
Article in English | MEDLINE | ID: mdl-36107808

ABSTRACT

OBJECTIVE: The objective of this study was to implement active muscles in a computationally efficient small female finite element model (54.1 kg, 149.9 cm) suitable for predicting occupant response during precrash braking and low-speed frontal sled tests. We further calibrate and compare its results against an average male model (78.4 kg, 174.9 cm) using the same developmental approach. METHODS: The active female model (F05-OS + Active) was developed by adding active skeletal muscle elements (n = 232) to the Global Human Body Models Consortium (GHBMC) 5th percentile female simplified occupant model (F05-OS v2.3). The muscle properties and physiological cross-sectional area (PCSA) for each muscle were taken from the M50-OS + Active v2.3 model but PCSAs were mass scaled to a 5th percentile female. A total of 8 simulations were conducted; 2 acceleration pulses (1.0 g and 2.5 g), 2 models (F05-OS + Active and M50-OS + Active), and 2 muscle states (activation and control; e.g., no activation). Each model's kinematics and reaction forces were compared with experimental data. Occupant responses of 6 5th percentile female and 6 50th percentile male volunteers (n = 12 total) were used. The data depict occupant response in precrash braking and low-speed frontal sled tests in a rigid test buck. All procedures were reviewed and approved by the Virginia Tech institutional review board. Each volunteer was in a relaxed state before the applied acceleration. RESULTS: The occupant peak forward excursion results of both active models reasonably match the volunteer data for both pulse severities. The differences between active and control models were found to be significant by Wilcoxon signed-rank test (p < .05). The reaction loads of the active and control models lie within the experimental corridors. CONCLUSIONS: To the authors' knowledge, this study is the first to concurrently calibrate and compare equivalently developed computational models of females and males in precrash and low-speed impacts. The modeling approach is capable of capturing the varied kinematics observed in the relaxed condition, which may be an important factor in studies focused on the effects of low-g vehicle dynamics on the occupant position. Finally, the computationally efficient modeling approach is imperative given the long duration (>500 ms) of the events simulated.


Subject(s)
Accidents, Traffic , Human Body , Humans , Male , Female , Calibration , Acceleration , Muscle, Skeletal/physiology , Biomechanical Phenomena
6.
J Mech Behav Biomed Mater ; 122: 104668, 2021 10.
Article in English | MEDLINE | ID: mdl-34265671

ABSTRACT

The objectives of this study were to develop novel methods for quantifying human rib cortical bone material properties in compression and to compare the compressive material property data to existing tensile data for matched subjects. Cylindrical coupons were obtained from the rib cortical bone of 30 subjects (M = 19, F = 11) ranging from 18 to 95 years of age (Avg. = 48.5 ± 24.3). Two coupons were obtained from each subject. One coupon was tested in compression at 0.005 strain/s, while the other coupon was tested in compression at 0.5 strain/s. Load and displacement data were recorded so that the elastic modulus, yield stress, yield strain, ultimate stress, ultimate strain, elastic strain energy density (SED), plastic SED, and total SED could be calculated. All compressive material properties were significantly different between the two loading rates. An ANOVA revealed that sex alone had no significant effect on the compressive material properties. The interaction between sex and age was significant for some material properties, but this may have been a consequence of the lack of older females in the subject pool. None of the compressive material properties were significantly correlated with age, but were more correlated with sample density. This finding differed for the tensile material properties, which showed stronger correlations with age. When comparing between tension and compression, significant differences were observed for all material properties except for the total SED, once the effects of loading rate and age had been accounted for. This was the first study to quantify the material properties of human rib cortical bone in compression. The results of this study demonstrated that rib and thorax finite element models should consider the effects of loading rate, loading mode, and age when incorporating material properties published in the literature.


Subject(s)
Cortical Bone , Ribs , Compressive Strength , Elastic Modulus , Female , Humans , Stress, Mechanical , Thorax
7.
J Mech Behav Biomed Mater ; 116: 104358, 2021 04.
Article in English | MEDLINE | ID: mdl-33610029

ABSTRACT

Rib fractures are common thoracic injuries in motor vehicle crashes. Several human finite element (FE) human models have been created to numerically assess thoracic injury risks. However, the accurate prediction of rib biomechanical response has shown to be challenging due to human variation and modeling approaches. The main objective of this study was to better understand the role of modeling approaches on the biomechanical response of human ribs in anterior-posterior bending. Since the development of subject specific rib models is a time-consuming process, the second objective of this study was to develop an accurate morphing approach to quickly generate high quality subject specific rib meshes. The exterior geometries and cortical-trabecular boundaries of five human 6th-level ribs were extracted from CT-images. One rib mesh was developed in a parametric fashion and the other four ribs were developed with an in-house morphing algorithm. The morphing algorithm automatically defined landmarks on both the periosteal and endosteal boundaries of the cortical layer, which were used to morph the template nodes to target geometries. Three different cortical bone material models were defined based on the stress-strain data obtained from subject-specific tensile coupon tests for each rib. Full rib anterior-posterior bending tests were simulated based on data recorded in testing. The results showed similar trends to test data with some sensitivity relative to the material modeling approach. Additionally, the FE models were substantially more resistant to failure, highlighting the need for better techniques to model rib fracture. Overall, the results of this work can be used to improve the biofidelity of human rib finite element models.


Subject(s)
Rib Fractures , Ribs , Accidents, Traffic , Biomechanical Phenomena , Cortical Bone , Finite Element Analysis , Humans , Models, Biological
9.
Stapp Car Crash J ; 64: 1-30, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33636001

ABSTRACT

The CORA rating metric is frequently used in the field of injury biomechanics to compare the similarity of response time histories. However, subjectivity exists within the CORA metric in the form of user-customizable parameters that give the metric the flexibility to be used for a variety of applications. How these parameters are customized is not always reported in the literature, and it is unknown how these customizations affect the CORA scores. Therefore, the purpose of this study was to evaluate how variations in the CORA parameters affect the resulting similarity scores. A literature review was conducted to determine how the CORA parameters are commonly customized within the literature. Then, CORA scores for two datasets were calculated using the most common parameter customizations and the default parameters. Differences between the CORA scores using customized and default parameters were statistically significant for all customizations. Furthermore, most customizations produced score increases relative to the default settings. The use of standard deviation corridors and exclusion of the corridor component were found to produce the largest score differences. The observed differences demonstrated the need for researchers to exercise transparency when using customized parameters in CORA analyses.


Subject(s)
Wounds and Injuries , Biomechanical Phenomena , Humans , Wounds and Injuries/diagnosis
10.
J Mech Behav Biomed Mater ; 102: 103410, 2020 02.
Article in English | MEDLINE | ID: mdl-31655338

ABSTRACT

The objective of this study was to evaluate the effects of sex, loading rate, and age on the tensile material properties of human rib cortical bone over a wide range of subject demographics. Sixty-one (n = 61) subjects (M = 32, F = 29) ranging in age from 17 to 99 years of age (Avg. = 56.4 ±â€¯26.2 yrs) were used in this study. Two rectangular coupons of cutaneous rib cortical bone were obtained from each subject and milled into dog-bone coupons for testing. For each subject, one coupon was tested to failure in tension on a material testing system at a targeted strain rate of 0.005 strain/s, while the other coupon was tested at 0.5 strain/s. A reaction load cell was used to measure axial load, and an extensometer was used to measure displacement within the gage length of the coupon. Data were obtained from fifty-eight (n = 58) subjects at 0.005 strain/s and fifty-eight (n = 58) subjects at 0.5 strain/s, with fifty-five (n = 55) matched pairs. The elastic modulus, yield stress, yield strain, failure stress, failure strain, ultimate stress, elastic strain energy density (SED), plastic SED, and total SED were then calculated for each test. There were no significant differences in material properties between sexes and no significant interactions between age and sex. In regard to the differences in material properties with respect to loading rate, yield stress, yield strain, failure stress, ultimate stress, elastic SED, plastic SED, and total SED were significantly lower at 0.005 strain/s compared to 0.5 strain/s. Spearman correlation analyses showed that all material properties had significant negative correlations with age at 0.005 strain/s except modulus. At 0.5 strain/s, all material properties except yield strain had significant negative correlations with age. Although the results revealed that the material properties of human rib cortical bone varied significantly with respect to chronological age, the R2 values only ranged from 0.15 to 0.62, indicating that there may be other underlying variables that better account for the variance within a given population. This is the first study to analyze the effects of sex, loading rate, and age on tensile material properties of human rib cortical bone using a reasonably large sample size. Overall, the results of this study provide data that will allow FEMs to better model and assess differences in the material response of the rib cage for nearly all vehicle occupants of driving age.


Subject(s)
Cortical Bone , Ribs , Animals , Biomechanical Phenomena , Dogs , Elastic Modulus , Humans , Stress, Mechanical , Tensile Strength
11.
Traffic Inj Prev ; 20(sup2): S88-S95, 2019.
Article in English | MEDLINE | ID: mdl-31589083

ABSTRACT

Objective: The current state of the art human body models (HBMs) underpredict the number of fractured ribs. Also, it has not been shown that the models can predict the fracture locations. Efforts have been made to create subject specific rib models for fracture prediction, with mixed results. The aim of this study is to evaluate if subject-specific finite element (FE) rib models, based on state-of-the-art clinical CT data combined with subject-specific material data, can predict rib stiffness and fracture location in anterior-posterior rib bending.Method: High resolution clinical CT data was used to generate detailed subject-specific geometry for twelve FE models of the sixth rib. The cortical bone periosteal and endosteal surfaces were estimated based on a previously calibrated cortical bone mapping algorithm. The cortical and the trabecular bone were modeled using a hexa-block algorithm. The isotropic material model for the cortical bone in each rib model was assigned subject-specific material data based on tension coupon tests. Two different modeling strategies were used for the trabecular bone.The capability of the FE model to predict fracture location was carried out by modeling physical dynamic anterior-posterior rib bending tests. The rib model predictions were directly compared to the results from the tests. The predicted force-displacement time history, strain measurements at four locations, and rotation of the rib ends were compared to the results from the physical tests by means of CORA analysis. Rib fracture location in the FE model was estimated as the position for the element with the highest first principle strain at the time corresponding to rib fracture in the physical test.Results: Seven out of the twelve rib models predicted the fracture locations (at least for one of the trabecular modeling strategies) and had a force-displacement CORA score above 0.65. The other five rib models, had either a poor force-displacement CORA response or a poor fracture location prediction. It was observed that the stress-strain response for the coupon test for these five ribs showed significantly lower Young's modulus, yield stress, and elongation at fracture compared to the other seven ribs.Conclusion: This study indicates that rib fracture location can be predicted for subject specific rib models based on high resolution CT, when loaded in anterior-posterior bending, as long as the rib's cortical cortex is of sufficient thickness and has limited porosity. This study provides guidelines for further enhancements of rib modeling for fracture location prediction with HBMs.


Subject(s)
Accidents, Traffic , Models, Biological , Rib Fractures/etiology , Ribs/physiopathology , Finite Element Analysis , Humans , Mechanical Phenomena , Rib Fractures/diagnostic imaging , Rib Fractures/physiopathology , Ribs/diagnostic imaging , Rotation , Tomography, X-Ray Computed
12.
Traffic Inj Prev ; 19(sup2): S40-S47, 2018.
Article in English | MEDLINE | ID: mdl-30543308

ABSTRACT

OBJECTIVE: The objective of this research was to compare the kinetics and predicted injury risks of the Hybrid III (HIII) and Test device for Human Occupant Restraint (THOR)-M necks during full-scale frontal sled tests under 3 safety restraint conditions: knee bolster (KB), knee bolster and steering wheel airbag (KB/SWAB), and knee bolster airbag and steering wheel airbag (KBAB/SWAB). METHODS: Twelve sled tests were performed for the HIII and THOR-M, and 8 matched sled tests were performed using postmortem human surrogates (PMHSs). The tests were designed to match the 2012 Toyota Camry New Car Assessment Program (NCAP) full-scale crash test. Upper and lower neck forces and moments were collected from the HIII and THOR-M load cells. Inverse dynamics was used to calculate PMHS upper neck forces and moments from acceleration data until the time of head contact. The PMHSs experienced head contact with the SWAB before appreciable neck loading occurred. Therefore, PMHS neck forces and moments were only compared to the HIII and THOR-M for the KB condition. Neck injury risks were calculated for the HIII and THOR-M and were compared to the injuries observed for the PMHSs. RESULTS: The HIII had greater upper and lower neck shear forces than the THOR-M, whereas both surrogates had similar upper and lower neck axial forces. The HIII also experienced greater peak upper neck bending moments than the THOR-M, which experienced negligible upper neck bending moments. Before head contact, the PMHSs experienced upper neck flexion, and the HIII experienced extension. The HIII and THOR-M injury risk curves predicted less than a 50% risk of an Abbreviated Injury Scale (AIS) 3+ injury. No AIS 3+ neck injuries were observed for the PMHS tests, but at least one AIS 2 injury was observed per condition. CONCLUSIONS: The results of this study showed that the HIII and THOR-M had different neck kinetics for these restraint conditions. In particular, the THOR-M experienced lower upper neck shear forces and bending moments. These differences are likely due to the very different neck designs of the anthropomorphic test dummies (ATDs), particularly the increased compliance of the THOR-M neck. Despite these differences, both ATDs still predicted a similar risk of AIS 3+ neck injury.


Subject(s)
Neck Injuries/physiopathology , Neck/physiology , Protective Devices/statistics & numerical data , Abbreviated Injury Scale , Humans , Kinetics , Manikins , Neck Injuries/pathology , Risk
13.
Traffic Inj Prev ; 19(sup1): S50-S58, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29584475

ABSTRACT

OBJECTIVE: The objective of this research was to compare the occupant kinematics of the Hybrid III (HIII), THOR-M, and postmortem human surrogates (PMHS) during full-scale frontal sled tests under 3 safety restraint conditions: knee bolster (KB), knee bolster and steering wheel airbag (KB/SWAB), and knee bolster airbag and steering wheel airbag (KBAB/SWAB). METHODS: A total of 20 frontal sled tests were performed with at least 2 tests performed per restraint condition per surrogate. The tests were designed to match the 2012 Toyota Camry New Car Assessment Program (NCAP) full-scale crash test. Rigid polyurethane foam surrogates with compressive strength ratings of 65 and 19 psi were used to simulate the KB and KBAB, respectively. The excursions of the head, shoulders, hips, knees, and ankles were collected using motion capture. Linear acceleration and angular velocity data were also collected from the head, thorax, and pelvis of each surrogate. Time histories were compared between surrogates and restraint conditions using ISO/TS 18571. RESULTS: All surrogates showed some degree of sensitivity to changes in restraint condition. For example, the use of a KBAB decreased the pelvis accelerations and the forward excursions of the knees and hips for all surrogates. However, these trends were not observed for the thorax, shoulders, and head, which showed more sensitivity to the presence of a SWAB. The average scores computed using ISO/TS 18571 for the HIII/PMHS and THOR-M/PMHS comparisons were 0.527 and 0.518, respectively. The HIII had slightly higher scores than the THOR-M for the excursions (HIII average = 0.574; THOR average = 0.520). However, the THOR-M had slightly higher scores for the accelerations and angular rates (HIII average = 0.471; THOR average = 0.516). CONCLUSIONS: The data from the current study showed that both KBABs and SWABs affected the kinematics of all surrogates during frontal sled tests. The results of the objective rating analysis indicated that the HIII and THOR-M had comparable overall biofidelity scores. The THOR-M slightly outperformed the HIII for the acceleration and angular velocity data. However, the HIII scored slightly better than the THOR-M for the excursion data. The most notable difference in biofidelity was for the knee excursions, where the HIII had a much higher average ISO score. Only the biofidelity of the HIII and THOR-M with regard to occupant kinematics was evaluated in this study; therefore, future work will evaluate the biofidelity of the ATDs in terms of lower extremity loading, thoracic response, and neck loading.


Subject(s)
Accidents, Traffic/statistics & numerical data , Manikins , Restraint, Physical/methods , Acceleration , Ankle/physiology , Biomechanical Phenomena , Cadaver , Head/physiology , Hip/physiology , Humans , Knee/physiology , Male , Pelvis/physiology , Shoulder/physiology , Thorax/physiology , Weight-Bearing/physiology
14.
Stapp Car Crash J ; 62: 1-65, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30608992

ABSTRACT

A total of 20 full-scale frontal sled tests were conducted using the Hybrid III (HIII), THOR-M and post-mortem human surrogates (PMHSs) to evaluate the thoracic biofidelity of the HIII and THOR-M under various belted restraint conditions. Each surrogate was tested under three belted restraint conditions: knee bolster, knee bolster and steering wheel airbag, and knee bolster airbag and steering wheel airbag. In order to assess the relative biofidelity of each ATD, external thoracic deflections were quantitatively compared between the ATDs and PMHSs using an objective rating metric. The HIII had slightly higher biofidelity than the THOR-M for the external thoracic deflections. Specifically, the THOR-M lower chest was more compliant compared to the other surrogates. However, the THOR-M exhibited expansion of the lower chest opposite belt loading, which was also observed to some degree in the PMHSs. The efficacy of the current injury risk prediction instrumentation and criteria were also evaluated for each surrogate. The THOR-M and its proposed injury risk criteria predicted the injuries observed in the PMHS tests better than the HIII. The PMHS injury criteria over-predicted the amount of chest deflection necessary to produce a severe injury and, consequently, under-predicted injury risk. The results of this study indicate that further testing should be performed to evaluate the biofidelity of the THOR-M thorax under more conditions. Furthermore, current thoracic injury risk criteria, which were developed using censored data, may not be effective at predicting injuries for all restraints and experimental conditions.


Subject(s)
Accidents, Traffic , Air Bags , Thoracic Injuries , Biomechanical Phenomena , Cadaver , Humans , Manikins , Thoracic Injuries/etiology
15.
Gait Posture ; 48: 256-260, 2016 07.
Article in English | MEDLINE | ID: mdl-27367937

ABSTRACT

The required coefficient of friction (RCOF) is frequently reported in the literature as an indicator of slip propensity. This study aimed to further develop slip prediction models based on RCOF by examining slips under moderately slippery conditions where the RCOF was approximately equal to the available coefficient of friction. Baseline RCOFs were found for normal walking trials and then an unexpected slip was introduced with a moderately slippery boot-floor contaminant combination for thirty-one subjects. Slip outcomes (i.e., whether a subject experienced a slip) were assessed based on the displacement of a marker placed on the heel. A logistic regression analysis was used to model the impact of RCOF on slipping. Results showed that subjects who walked with a greater RCOF were found to have a higher probability of slipping. The predicted probability of a slip across the RCOF ranged from 3% to 95% and an increase of 0.01 in RCOF was associated with a slipping odds ratio of 1.7. Thus, modest differences in RCOF can have a dramatic impact on slip propensity. This study shows that RCOF can be a sensitive and valid predictor of slipping in realistic frictional environments.


Subject(s)
Accidental Falls , Models, Statistical , Walking/physiology , Adult , Biomechanical Phenomena/physiology , Humans , Logistic Models , Male
16.
Acta Biomater ; 11: 554-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25278442

ABSTRACT

Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 µm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates.


Subject(s)
Absorbable Implants , Biocompatible Materials/chemical synthesis , Body Fluids/chemistry , Cell Survival/drug effects , Magnesium/chemistry , Magnesium/pharmacology , Metals, Rare Earth/chemistry , Alloys/chemistry , Alloys/pharmacology , Animals , BALB 3T3 Cells , Biocompatible Materials/pharmacology , Corrosion , Materials Testing , Metals, Rare Earth/pharmacology , Mice , Rabbits , Surface Properties
17.
J Biomech ; 47(2): 458-63, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24267270

ABSTRACT

Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to (1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; (2) determine the effects of fluid pressure on slip severity; and (3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/-standard deviation) were significantly higher for the untreaded conditions (124+/-75 kPa) than the treaded conditions (1.1+/-0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r=0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures.


Subject(s)
Accidental Falls , Floors and Floorcoverings , Shoes , Walking , Adult , Female , Humans , Hydrodynamics , Male , Pressure , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...