Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Mol Biol Cell ; : mbcE24040166, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985518

ABSTRACT

Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells. [Media: see text].

2.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569041

ABSTRACT

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Subject(s)
Inflammatory Bowel Diseases , Prostaglandins , Humans , Epithelium/metabolism , Inflammation , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Fibroblasts/metabolism
3.
J Appl Lab Med ; 9(3): 512-525, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38384160

ABSTRACT

BACKGROUND: In addition to newborn screening, dried blood spots (DBSs) are used for a wide variety of analytes for clinical, epidemiological, and research purposes. Guidelines on DBS collection, storage, and transport are available, but it is suggested that each laboratory should establish its own acceptance criteria. METHODS: An optical scanning device was developed to assess the quality of DBSs received in the newborn screening laboratory from 11 maternity wards between 2013 and 2018. The algorithm was adjusted to agree with the visual examination consensus of experienced laboratory personnel. Once validated, the algorithm was used to categorize DBS specimens as either proper or improper. Improper DBS specimens were further divided based on 4 types of specimen defects. RESULTS: In total, 27 301 DBSs were analyzed. Compared with an annual DBS rejection rate of about 1%, automated scanning rejected 26.96% of the specimens as having at least one defect. The most common specimen defect was multi-spotting (ragged DBS, 19.13%). Among maternity wards, improper specimen rates varied greatly between 5.70% and 49.92%. CONCLUSIONS: Improper specimen rates, as well as the dominant type of defect(s), are mainly institution-dependent, with various maternity wards consistently showing specific patterns of both parameters over time. Although validated in agreement with experienced laboratory personnel consensus, automated analysis rejects significantly more specimens. While continuous staff training, specimen quality monitoring, and problem-reporting to maternities is recommended, a thorough quality assessment strategy should also be implemented by every newborn screening laboratory. An important role in this regard may be played by automation in the form of optical scanning devices.


Subject(s)
Algorithms , Dried Blood Spot Testing , Neonatal Screening , Humans , Neonatal Screening/methods , Neonatal Screening/standards , Infant, Newborn , Dried Blood Spot Testing/methods , Dried Blood Spot Testing/standards , Quality Assurance, Health Care , Quality Control , Blood Specimen Collection/methods , Blood Specimen Collection/standards
4.
RSC Adv ; 13(48): 33875-33886, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38020028

ABSTRACT

In the present study, the Density Functional Theory (DFT) was employed to computationally investigate the potential application of newly developed lead-free perovskites with the formula of TlSnX3 (X = Cl, Br, or I) as absorbers in the perovskite solar cells and as thermoelectric materials. The Quantum Espresso code was implemented to optimize the structural configuration of the perovskites and to compute a range of their properties, including their elasticity, electronic behavior, optical characteristics, and thermoelectric attributes. The findings indicated that these perovskite materials exhibit both chemical and structural stability and that TlSnBr3 and TlSnI3 perovskites possess high dynamic stability. The findings additionally revealed direct (R → R) band gap energy values of 0.87 eV for TlSnCl3, 0.52 eV for TlSnBr3, and 0.28 eV for TlSnI3 using the GGA-PBE functional. Further analysis of their elastic properties suggested that these materials are mechanically stable and displayed overall ductile behaviour. They also demonstrated remarkable optical properties, particularly a high absorption coefficient, ranging from 105 cm-1 to 106 cm-1. Consequently, it is reasonable to infer that these materials exhibit considerable potential for utilization in solar cells. Finally, the evaluation of their thermoelectric properties has revealed the highly promising potential of these materials to be employed in thermoelectric applications.

5.
bioRxiv ; 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37790420

ABSTRACT

Aneuploidy, a near ubiquitous genetic feature of tumors, is a context-dependent driver of cancer evolution; however, the mechanistic basis of this role remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigate how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Single-cell RNA sequencing reveals that the gene expression signature across over 100 unique aneuploid karyotypes is enriched with p53 responsive genes. The primary driver of p53 activation is karyotype complexity. Complex aneuploid cells with multiple unbalanced chromosomes activate p53 and undergo G1 cell-cycle arrest, independent of DNA damage and without evidence of senescence. By contrast, simple aneuploid cells with 1-3 chromosomes gained or lost continue to proliferate, demonstrated by single cell tracking in colonoids. Notably, simple aneuploid cells exhibit impaired differentiation when niche factors are withdrawn. These findings suggest that while complex aneuploid cells are eliminated from the normal epithelium due to p53 activation, simple aneuploid cells can escape this checkpoint and may contribute to niche factor-independent growth of cancer-initiating cells.

6.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808771

ABSTRACT

Inflammation-associated fibroblasts (IAFs) are associated with the progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial function and architecture is unknown. In this study, we developed an in vitro model whereby human colon fibroblasts are induced to become IAFs by specific cytokines and recapitulate key features of IAFs in vivo. When co-cultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid swelling and barrier disruption due to swelling and rupture of individual epithelial cells. Epithelial cells co-cultured with IAFs also exhibit increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated through a paracrine pathway involving prostaglandin E2 (PGE2) and the PGE2 receptor EP4, leading to PKA-dependent activation of the CFTR chloride channel. Importantly, EP4-specific chemical inhibitors effectively prevented colonoid swelling and restored normal proliferation and genome stability of IAF-exposed epithelial cells. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a potential treatment to mitigate inflammation-associated epithelial injury.

7.
Mol Vis ; 29: 329-337, 2023.
Article in English | MEDLINE | ID: mdl-38264610

ABSTRACT

Purpose: Autosomal recessive cone and cone-rod dystrophies (CD/CRD) are inherited forms of vison loss. Here, we report on and correlate the clinical phenotypes with the underlying genetic mutations. Methods: Clinical information was collected from subjects, including a family history with a chart review. They underwent a full ophthalmic examination, including best-corrected visual acuity, direct and indirect ophthalmoscopy, color vision testing, color fundus photography, contrast sensitivity, autofluorescence, and spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography. Next-generation panel-based genetic testing was used to identify DNA variants in subject buccal swab samples. Results: Genetic testing in two patients revealed three novel variants in the TTLL5 gene associated with CD/CRD: two missense variants (c.1433G>A;p.(Arg478Gln), c.241C>G;p.(Leu81Val), and one loss-of-function variant (c.2384_2387del;p.(Ala795Valfs*9). Based on in-silico analysis, structural modeling, and comparison to previously reported mutations, these novel variants are very likely to be disease-causing mutations. Combining retinal imaging with SD-OCT analysis, we observed an unusual sheen in the CD/CRD phenotypes. Conclusion: Based on the protein domain location of novel TTLL5 variants and the localization of TTLL5 to the connecting cilium, we conclude that the CD/CRD disease phenotype is characterized as a ciliopathy caused by protein tracking dysfunction. This initially affects cone photoreceptors, where photoreceptor cilia express a high level of TTLL5, but extends to rod photoreceptors over time. Fundus photography correlated with SD-OCT imaging suggests that the macular sheen characteristically seen with TTLL5 mutations derives from the photoreceptor's outer segments at the posterior pole.


Subject(s)
Cone Dystrophy , Cone-Rod Dystrophies , Retinal Dystrophies , Humans , Retinal Cone Photoreceptor Cells , Tomography, Optical Coherence , Tubulin , Phenotype , Tyrosine , Carrier Proteins
8.
Environ Sci Pollut Res Int ; 29(22): 32326-32334, 2022 May.
Article in English | MEDLINE | ID: mdl-35137317

ABSTRACT

The global pandemic caused by COVID-19 has resulted in major costs around the world, costs with dimensions in every aspect, from peoples' daily living to the global economy. As the pandemic progresses, the virus evolves, and more vaccines become available, and the 'battle against the virus' continues. As part of the battle, Wastewater-Based Epidemiology (WBE) technologies are being widely deployed in essential roles for SARS-CoV-2 detection and monitoring. While focusing on demonstrating the advantages of passive samplers as a tool in WBE, this review provides a holistic view of the current WBE applications in monitoring SARS-CoV-2 with the integration of the most up-to-date data. A novel scenario example based on a recent Nanjing (China) outbreak in July 2021 is used to illustrate the potential benefits of using passive samplers to monitor COVID-19 and to facilitate effective control of future major outbreaks. The presented contents and how the application of passive samplers indicates that this technology can be beneficial at different levels, varying from building to community to regional. Countries and regions that have the pandemic well under control or have low positive case occurrences have the potential to significantly benefit from deploying passive samplers as a measure to identify and suppress outbreaks.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
9.
Ann Neurol ; 91(1): 117-130, 2022 01.
Article in English | MEDLINE | ID: mdl-34716721

ABSTRACT

OBJECTIVE: This observational cohort study aims to quantify disease burden over time, establish disease progression rates, and identify factors that may determine the disease course of Leigh syndrome. METHODS: Seventy-two Leigh syndrome children who completed the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) at baseline at 3.7 years (interquartile range [IQR] = 2.0-7.6) and follow-up assessments at 7.5 years (IQR = 3.7-11.0) in clinics were enrolled. Eighty-two percent of this cohort had a confirmed genetic diagnosis, with pathogenic variants in the MT-ATP6 and SURF1 genes being the most common cause. The total NPMDS scores denoted mild (0-14), moderate (15-25), and severe (>25) disease burden. Detailed clinical, neuroradiological, and molecular genetic findings were also analyzed. RESULTS: The median total NPMDS scores rose significantly (Z = -6.9, p < 0.001), and the percentage of children with severe disease burden doubled (22% → 42%) over 2.6 years of follow-up. Poor function (especially mobility, self-care, communication, feeding, and education) and extrapyramidal features contributed significantly to the disease burden (τb  ≈ 0.45-0.68, p < 0.001). These children also deteriorated to wheelchair dependence (31% → 57%), exclusive enteral feeding (22% → 46%), and one-to-one assistance for self-care (25% → 43%) during the study period. Twelve children (17%) died after their last NPMDS scores were recorded. These children had higher follow-up NPMDS scores (disease burden; p < 0.001) and steeper increase in NPMDS score per annum (disease progression; p < 0.001). Other predictors of poor outcomes include SURF1 gene variants (p < 0.001) and bilateral caudate changes on neuroimaging (p < 0.01). INTERPRETATION: This study has objectively defined the disease burden and progression of Leigh syndrome. Our analysis has also uncovered potential influences on the trajectory of this neurodegenerative condition. ANN NEUROL 2022;91:117-130.


Subject(s)
Leigh Disease , Child , Child, Preschool , Cohort Studies , Cost of Illness , Disease Progression , Female , Humans , Infant , Longitudinal Studies , Male
10.
Mol Diagn Ther ; 25(2): 181-206, 2021 03.
Article in English | MEDLINE | ID: mdl-33646563

ABSTRACT

Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.


Subject(s)
Genetic Therapy , Mitochondria/genetics , Mitochondrial Diseases/therapy , Clinical Trials as Topic , Genome, Mitochondrial/genetics , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology
11.
Biochem Biophys Rep ; 25: 100926, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33553688

ABSTRACT

Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7 -/- ) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7 -/- mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7 -/- mice. Furthermore, DOX-treated EC-Atg7 -/- mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC.

12.
Life Sci ; 260: 118216, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32768582

ABSTRACT

AIMS: Doxorubicin (DOX) is a potent anticancer drug with severe dose-dependent cardiotoxicity. To address this issue, previous research primarily focused on DOX-induced toxicity on cardiomyocytes. However, more recent research has looked into the endothelium as a therapeutic target due to the emerging role of endothelial cells in the support of cardiomyocyte survival and function. MAIN METHODS: We investigated a novel role of endothelial cell (EC) primary cilia in the prevention of DOX-mediated cardiotoxicity. Mice lacking EC primary cilia, via the deletion of EC-specific intraflagellar protein 88 (IFT88) expression, were administered DOX (20 mg/kg i.p.), and assessed for survival, cardiac function, cardiac structure changes, and indices of cardiomyocyte injury. KEY FINDINGS: DOX-treatment resulted in reduced survival and cardiac function (ejection fraction and fractional shortening) in EC-IFT88-/- mice vs. their similarly treated wild-type littermates. Cardiomyocyte vacuolization, cardiac fibrosis, and serum CK-MB levels were also increased in DOX-treated mice compared to saline-treated controls. However, these parameters were not significantly different when comparing WT and EC-IFT88-/- mice after DOX treatment. SIGNIFICANCE: The loss of EC primary cilia accelerated DOX-mediated mortality and reduced cardiac function, suggesting pathways downstream of ciliary-mediated signal transduction as potential targets to promote EC support of cardiomyocyte function during DOX treatment.


Subject(s)
Cilia/physiology , Doxorubicin/toxicity , Endothelial Cells/physiology , Heart Diseases/chemically induced , Tumor Suppressor Proteins/physiology , Animals , Crosses, Genetic , Endothelial Cells/ultrastructure , Heart Diseases/physiopathology , Heart Diseases/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Tumor Suppressor Proteins/deficiency
13.
Neuromuscul Disord ; 30(8): 661-668, 2020 08.
Article in English | MEDLINE | ID: mdl-32684384

ABSTRACT

Mitochondrial DNA (mtDNA)-related diseases often pose a diagnostic challenge and require rigorous clinical and laboratory investigation. Pathogenic variants in the mitochondrial tRNA gene MT-TY, which encodes the tRNATyr, are a rare cause of mitochondrial disease. Here we describe a novel m.5860delTA anticodon variant in the MT-TY gene in a patient who initially presented with features akin to a childhood onset myasthenic syndrome. Using histochemical, immunohistochemical and protein studies we demonstrate that this mutation leads to severe biochemical defects of mitochondrial translation, which is reflected in the early onset and progressive phenotype. This case highlights the clinical overlap between mtDNA-related diseases and other neuromuscular disorders, and demonstrates the potential pitfalls in analysis of next generation sequencing results, given whole exome sequencing of a blood DNA sample failed to make a genetics diagnosis. Muscle biopsy remains an important requirement in the diagnosis of mitochondrial disease and in establishing the pathogenicity of novel mtDNA variants.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondrial Myopathies/diagnosis , Adolescent , Biopsy , Humans , Male , Mitochondria/genetics , Mitochondrial Myopathies/genetics , Muscle Weakness/pathology , Muscle, Skeletal/pathology , Mutation/genetics
14.
Acta Neuropathol Commun ; 8(1): 64, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32375856

ABSTRACT

RNA modifications are emerging as critical regulators in cancer biology, thanks to their ability to influence gene expression and the predominant protein isoforms expressed during cell proliferation, migration, and other pro-oncogenic properties. The reversibility and dynamic nature of post-transcriptional RNA modifications allow cells to quickly adapt to microenvironmental changes. Recent literature has revealed that the deregulation of RNA modifications can promote a plethora of developmental diseases, including tumorigenesis. In this review, we will focus on four key post-transcriptional RNA modifications which have been identified as contributors to the pathogenesis of brain tumors: m6A, alternative polyadenylation, alternative splicing and adenosine to inosine modifications. In addition to the role of RNA modifications in brain tumor progression, we will also discuss potential opportunities to target these processes to improve the dismal prognosis for brain tumors.


Subject(s)
Brain Neoplasms/genetics , Carcinogenesis/genetics , RNA Processing, Post-Transcriptional/genetics , Animals , Humans
15.
Biochem Biophys Res Commun ; 524(1): 50-56, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31980166

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare, but progressive and devastating vascular disease with few treatment options to prevent the advancement to right ventricular dysfunction hypertrophy and failure. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, enhances urinary glucose excretion as well as reduces cardiovascular events and mortality in individuals with type 2 diabetes. While empagliflozin has been reported to lower systemic hypertension due to increased diuresis, the effect of empagliflozin on PAH is unknown. We used monocrotaline (MCT)-treated Sprague-Dawley rats to determine if empagliflozin alters PAH-associated outcomes. Compared to vehicle control, daily empagliflozin administration significantly improved survival in rats with severe MCT-induced PAH. Hemodynamic assessments showed that empagliflozin treatment significantly reduced mean pulmonary artery pressure, right ventricular systolic pressure, and increased pulmonary acceleration time. Empagliflozin treatment resulted in reduced right ventricular hypertrophy and fibrosis. Histological and molecular assessments of lung vasculature revealed significantly reduced medial wall thickening and decreased muscularization of pulmonary arterioles after empagliflozin treatment compared to vehicle-treated rats. In summary, SGLT2 inhibition with empagliflozin lowered mortality, reduced right ventricle systolic pressure, and attenuated maladaptive pulmonary remodeling in MCT-induced PAH. Clinical studies evaluating the efficacy of SGLT-2 inhibition should be considered for patients with PAH.


Subject(s)
Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Hypertrophy, Right Ventricular/prevention & control , Pulmonary Arterial Hypertension/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Benzhydryl Compounds/metabolism , Blood Pressure/drug effects , Diabetes Mellitus, Type 2/pathology , Fibrosis/drug therapy , Glucosides/metabolism , Heart Ventricles/drug effects , Hemodynamics/drug effects , Humans , Lung/pathology , Male , Models, Animal , Monocrotaline/adverse effects , Mortality , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Risk Assessment , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Vascular Remodeling/drug effects
16.
Nat Struct Mol Biol ; 27(2): 222, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31965081

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Struct Mol Biol ; 27(1): 105, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31844248

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Nat Struct Mol Biol ; 26(12): 1167-1175, 2019 12.
Article in English | MEDLINE | ID: mdl-31792452

ABSTRACT

The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein, a (gp120-gp41)3 trimer, mediates fusion of viral and host cell membranes after gp120 binding to host receptor CD4. Receptor binding triggers conformational changes allowing coreceptor (CCR5) recognition through CCR5's tyrosine-sulfated amino (N) terminus, release of the gp41 fusion peptide and fusion. We present 3.3 Å and 3.5 Å cryo-EM structures of E51, a tyrosine-sulfated coreceptor-mimicking antibody, complexed with a CD4-bound open HIV-1 native-like Env trimer. Two classes of asymmetric Env interact with E51, revealing tyrosine-sulfated interactions with gp120 mimicking CCR5 interactions, and two conformations of gp120-gp41 protomers (A and B protomers in AAB and ABB trimers) that differ in their degree of CD4-induced trimer opening and induction of changes to the fusion peptide. By integrating the new structural information with previous closed and open envelope trimer structures, we modeled the order of conformational changes on the path to coreceptor binding site exposure and subsequent viral-host cell membrane fusion.


Subject(s)
Antibodies/chemistry , CD4 Antigens/chemistry , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp41/chemistry , HIV-1/chemistry , Antibodies/metabolism , Antigen-Antibody Reactions , Binding Sites , CD4 Antigens/metabolism , CD4 Antigens/ultrastructure , Cryoelectron Microscopy , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/ultrastructure , HIV Envelope Protein gp41/metabolism , HIV Envelope Protein gp41/ultrastructure , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Receptors, CCR5/immunology , Tyrosine/analogs & derivatives , Tyrosine/chemistry
19.
Mitochondrion ; 47: 18-23, 2019 07.
Article in English | MEDLINE | ID: mdl-31022467

ABSTRACT

Mitochondrial DNA variants in the MT-TM (mt-tRNAMet) gene are rare, typically associated with myopathic phenotypes. We identified a novel MT-TM variant resulting in prolonged seizures with childhood-onset myopathy, retinopathy, short stature and elevated CSF lactate associated with bilateral basal ganglia changes on neuroimaging. Muscle biopsy confirmed multiple respiratory chain deficiencies and focal cytochrome c oxidase (COX) histochemical abnormalities. Next-generation sequencing of the mitochondrial genome revealed a novel m.4412G>A variant at high heteroplasmy levels in muscle that fulfils all accepted criteria for pathogenicity including segregation within single muscle fibres, thus broadening the genotypic and phenotypic landscape of mitochondrial tRNA-related disease.


Subject(s)
Basal Ganglia , DNA, Mitochondrial , Mitochondrial Myopathies , Point Mutation , RNA, Mitochondrial/genetics , RNA, Transfer, Met/genetics , Seizures , Basal Ganglia/metabolism , Basal Ganglia/pathology , Child , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Humans , Mitochondrial Myopathies/genetics , Mitochondrial Myopathies/metabolism , Mitochondrial Myopathies/pathology , Mitochondrial Myopathies/physiopathology , RNA, Mitochondrial/metabolism , RNA, Transfer, Met/metabolism , Seizures/genetics , Seizures/metabolism , Seizures/pathology , Seizures/physiopathology
20.
Cell Commun Signal ; 17(1): 19, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819189

ABSTRACT

Oncogenic KRAS plays a vital role in controlling tumor metabolism by enhancing aerobic glycolysis. Obesity driven by chronic consumption of high-fat diet (HFD) is a major risk factor for oncogenic KRAS-mediated pancreatic ductal adenocarcinoma (PDAC). However, the role of HFD in KRAS-mediated metabolic reprogramming has been obscure. Here, by using genetically engineered mouse models expressing an endogenous level of KRASG12D in pancreatic acinar cells, we demonstrate that hyperactivation of KRASG12D by obesogenic HFD, as compared to carbohydrate-rich diet, is responsible for enhanced aerobic glycolysis that associates with critical pathogenic responses in the path towards PDAC. Ablation of Cox-2 attenuates KRAS hyperactivation leading to the reversal of both aggravated aerobic glycolysis and high-grade dysplasia under HFD challenge. Our data highlight a pivotal role of the cooperative interaction between obesity-ensuing HFD and oncogenic KRAS in driving the heightened aerobic glycolysis during pancreatic tumorigenesis and suggest that in addition to directly targeting KRAS and aerobic glycolysis pathway, strategies to target the upstream of KRAS hyperactivation may bear important therapeutic value.


Subject(s)
Diet, High-Fat , Glycolysis , Obesity/metabolism , Oncogenes , Proto-Oncogene Proteins p21(ras)/metabolism , Aerobiosis , Animals , Cyclooxygenase 2/metabolism , Dietary Carbohydrates , Mice , Models, Biological , Obesity/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...