Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 29(21): 4449-4463, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37379429

ABSTRACT

PURPOSE: Target-dependent TCB activity can result in the strong and systemic release of cytokines that may develop into cytokine release syndrome (CRS), highlighting the need to understand and prevent this complex clinical syndrome. EXPERIMENTAL DESIGN: We explored the cellular and molecular players involved in TCB-mediated cytokine release by single-cell RNA-sequencing of whole blood treated with CD20-TCB together with bulk RNA-sequencing of endothelial cells exposed to TCB-induced cytokine release. We used the in vitro whole blood assay and an in vivo DLBCL model in immunocompetent humanized mice to assess the effects of dexamethasone, anti-TNFα, anti-IL6R, anti-IL1R, and inflammasome inhibition, on TCB-mediated cytokine release and antitumor activity. RESULTS: Activated T cells release TNFα, IFNγ, IL2, IL8, and MIP-1ß, which rapidly activate monocytes, neutrophils, DCs, and NKs along with surrounding T cells to amplify the cascade further, leading to TNFα, IL8, IL6, IL1ß, MCP-1, MIP-1α, MIP-1ß, and IP-10 release. Endothelial cells contribute to IL6 and IL1ß release and at the same time release several chemokines (MCP-1, IP-10, MIP-1α, and MIP-1ß). Dexamethasone and TNFα blockade efficiently reduced CD20-TCB-mediated cytokine release whereas IL6R blockade, inflammasome inhibition, and IL1R blockade induced a less pronounced effect. Dexamethasone, IL6R blockade, IL1R blockade, and the inflammasome inhibitor did not interfere with CD20-TCB activity, in contrast to TNFα blockade, which partially inhibited antitumor activity. CONCLUSIONS: Our work sheds new light on the cellular and molecular players involved in cytokine release driven by TCBs and provides a rationale for the prevention of CRS in patients treated with TCBs. See related commentary by Luri-Rey et al., p. 4320.


Subject(s)
Antibodies, Bispecific , Tumor Necrosis Factor-alpha , Humans , Mice , Animals , Chemokine CCL3 , Chemokine CCL4 , Antibodies, Bispecific/pharmacology , Interleukin-8 , Chemokine CXCL10 , Interleukin-6 , Cytokine Release Syndrome , Endothelial Cells , Inflammasomes , Cytokines , T-Lymphocytes , Dexamethasone/pharmacology , RNA
2.
Hemasphere ; 6(4): e700, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35291210

ABSTRACT

Acute lymphoblastic leukemia (ALL) is characterized by the presence of chromosomal changes, including numerical changes, translocations, and deletions, which are often associated with additional single-nucleotide mutations. In this study, we used single cell-targeted DNA sequencing to evaluate the clonal heterogeneity of B-ALL at diagnosis and during chemotherapy treatment. We designed a custom DNA amplicon library targeting mutational hotspot regions (in 110 genes) present in ALL, and we measured the presence of mutations and small insertions/deletions (indels) in bone marrow or blood samples from 12 B-ALL patients, with a median of 7973 cells per sample. Nine of the 12 cases showed at least 1 subclonal mutation, of which cases with PAX5 alterations or high hyperdiploidy (with intermediate to good prognosis) showed a high number of subclones (1 to 7) at diagnosis, defined by a variety of mutations in the JAK/STAT, RAS, or FLT3 signaling pathways. Cases with RAS pathway mutations had multiple mutations in FLT3, NRAS, KRAS, or BRAF in various clones. For those cases where we detected multiple mutational clones at diagnosis, we also studied blood samples during the first weeks of chemotherapy treatment. The leukemia clones disappeared during treatment with various kinetics, and few cells with mutations were easily detectable, even at low frequency (<0.1%). Our data illustrate that about half of the B-ALL cases show >2 subclones at diagnosis and that even very rare mutant cells can be detected at diagnosis or during treatment by single cell-targeted DNA sequencing.

3.
Blood ; 137(6): 801-811, 2021 02 11.
Article in English | MEDLINE | ID: mdl-32812017

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive leukemia that is most frequent in children and is characterized by the presence of few chromosomal rearrangements and 10 to 20 somatic mutations in protein-coding regions at diagnosis. The majority of T-ALL cases harbor activating mutations in NOTCH1 together with mutations in genes implicated in kinase signaling, transcriptional regulation, or protein translation. To obtain more insight in the level of clonal heterogeneity at diagnosis and during treatment, we used single-cell targeted DNA sequencing with the Tapestri platform. We designed a custom ALL panel and obtained accurate single-nucleotide variant and small insertion-deletion mutation calling for 305 amplicons covering 110 genes in about 4400 cells per sample and time point. A total of 108 188 cells were analyzed for 25 samples of 8 T-ALL patients. We typically observed a major clone at diagnosis (>35% of the cells) accompanied by several minor clones of which some were less than 1% of the total number of cells. Four patients had >2 NOTCH1 mutations, some of which present in minor clones, indicating a strong pressure to acquire NOTCH1 mutations in developing T-ALL cells. By analyzing longitudinal samples, we detected the presence and clonal nature of residual leukemic cells and clones with a minor presence at diagnosis that evolved to clinically relevant major clones at later disease stages. Therefore, single-cell DNA amplicon sequencing is a sensitive assay to detect clonal architecture and evolution in T-ALL.


Subject(s)
Clonal Evolution , DNA, Neoplasm/genetics , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Single-Cell Analysis/methods , Blood Cells/chemistry , Bone Marrow Cells/chemistry , Child , Humans , INDEL Mutation , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Neoplasm, Residual/diagnosis , PTEN Phosphohydrolase/genetics , Phylogeny , Polymorphism, Single Nucleotide , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Notch1/genetics , Receptor, Notch1/physiology , Recurrence , Salvage Therapy , Sensitivity and Specificity , Sequence Analysis, DNA
4.
Blood ; 134(16): 1323-1336, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31492675

ABSTRACT

The polycomb repressive complex 2, with core components EZH2, SUZ12, and EED, is responsible for writing histone 3 lysine 27 trimethylation histone marks associated with gene repression. Analysis of sequence data from 419 T-cell acute lymphoblastic leukemia (T-ALL) cases demonstrated a significant association between SUZ12 and JAK3 mutations. Here we show that CRISPR/Cas9-mediated inactivation of Suz12 cooperates with mutant JAK3 to drive T-cell transformation and T-ALL development. Gene expression profiling integrated with ChIP-seq and ATAC-seq data established that inactivation of Suz12 led to increased PI3K/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and WNT signaling. Moreover, a drug screen revealed that JAK3/Suz12 mutant leukemia cells were more sensitive to histone deacetylase (HDAC)6 inhibition than JAK3 mutant leukemia cells. Among the broad genome and gene expression changes observed on Suz12 inactivation, our integrated analysis identified the PI3K/mTOR, VEGF/VEGF receptor, and HDAC6/HSP90 pathways as specific vulnerabilities in T-ALL cells with combined JAK3 and SUZ12 mutations.


Subject(s)
Cell Transformation, Neoplastic/genetics , Polycomb Repressive Complex 2/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction/physiology , Animals , Humans , Janus Kinase 3/genetics , Mice , Mutation , Neoplasm Proteins , Transcription Factors
5.
J Exp Med ; 216(3): 638-655, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30765463

ABSTRACT

T cell development is critically dependent on successful rearrangement of antigen-receptor chains. At the ß-selection checkpoint, only cells with a functional rearrangement continue in development. However, how nonselected T cells proceed in their dead-end fate is not clear. We identified low CD27 expression to mark pre-T cells that have failed to rearrange their ß-chain. Expression profiling and single-cell transcriptome clustering identified a developmental trajectory through ß-selection and revealed specific expression of the transcription factor Duxbl at a stage of high recombination activity before ß-selection. Conditional transgenic expression of Duxbl resulted in a developmental block at the DN3-to-DN4 transition due to reduced proliferation and enhanced apoptosis, whereas RNA silencing of Duxbl led to a decrease in apoptosis. Transcriptome analysis linked Duxbl to elevated expression of the apoptosis-inducing Oas/RNaseL pathway. RNaseL deficiency or sustained Bcl2 expression led to a partial rescue of cells in Duxbl transgenic mice. These findings identify Duxbl as a regulator of ß-selection by inducing apoptosis in cells with a nonfunctional rearrangement.


Subject(s)
Homeodomain Proteins/metabolism , T-Lymphocytes/physiology , Transcription Factors/metabolism , Animals , Apoptosis/genetics , Female , Gene Expression Regulation , Homeodomain Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes/cytology , Thymus Gland/cytology , Transcription Factors/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
6.
Front Immunol ; 9: 2258, 2018.
Article in English | MEDLINE | ID: mdl-30364182

ABSTRACT

Interleukin-7 (IL-7) and Flt3-ligand (FL) are two cytokines important for the generation of B cells, as manifested by the impaired B cell development in mice deficient for either cytokine or their respective receptors and by the complete block in B cell differentiation in the absence of both cytokines. IL-7 is an important survival and proliferation factor for B cell progenitors, whereas FL acts on several early developmental stages, prior to B cell commitment. We have generated mice constitutively over-expressing both IL-7 and FL. These double transgenic mice develop splenomegaly and lymphadenopathy characterized by tremendously enlarged lymph nodes even in young animals. Lymphoid, myeloid and dendritic cell numbers are increased compared to mice over-expressing either of the two cytokines alone and the effect on their expansion is synergistic, rather than additive. B cell progenitors, early progenitors with myeloid and lymphoid potential (EPLM), common lymphoid progenitors (CLP) and lineage-, Sca1+, kit+ (LSK) cells are all increased not only in the bone marrow but also in peripheral blood, spleen and even lymph nodes. When transplanted into irradiated wild-type mice, lymph node cells show long-term multilineage reconstitution, further confirming the presence of functional hematopoietic progenitors therein. Our double transgenic mouse model shows that sustained and combined over-expression of IL-7 and FL leads to a massive expansion of most bone marrow hematopoietic progenitors and to their associated presence in peripheral lymphoid organs where they reside and potentially differentiate further, thus leading to the synergistic increase in mature lymphoid and myeloid cell numbers. The present study provides further in vivo evidence for the concerted action of IL-7 and FL on lymphopoiesis and suggests that extramedullary niches, including those in lymph nodes, can support the survival and maintenance of hematopoietic progenitors that under physiological conditions develop exclusively in the bone marrow.


Subject(s)
Hematopoietic Stem Cells/immunology , Interleukin-7/immunology , Lymphoid Progenitor Cells/immunology , Membrane Proteins/immunology , Multipotent Stem Cells/immunology , Animals , Cell Proliferation/genetics , Cell Survival/genetics , Cell Survival/immunology , Gene Expression/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Interleukin-7/genetics , Interleukin-7/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism
7.
Nat Immunol ; 19(7): 711-722, 2018 07.
Article in English | MEDLINE | ID: mdl-29925996

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. Whereas conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors. Here, we found that pDCs developed predominantly from IL-7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, whereas pDC identity relies on TCF4. RNA sequencing of IL-7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed in single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen.


Subject(s)
Dendritic Cells/immunology , Stem Cells/immunology , Animals , B-Lymphocytes/cytology , Cell Lineage , Cells, Cultured , Dendritic Cells/cytology , Female , GTPase-Activating Proteins/metabolism , Interferon Regulatory Factors/metabolism , Lectins/metabolism , Male , Mice , Receptors, Cell Surface/metabolism , Receptors, Interleukin-7/metabolism , Trans-Activators/metabolism , Transcription, Genetic
8.
Leukemia ; 32(6): 1358-1369, 2018 06.
Article in English | MEDLINE | ID: mdl-29740158

ABSTRACT

Next-generation sequencing has provided a detailed overview of the various genomic lesions implicated in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). Typically, 10-20 protein-altering lesions are found in T-ALL cells at diagnosis. However, it is currently unclear in which order these mutations are acquired and in which progenitor cells this is initiated. To address these questions, we used targeted single-cell sequencing of total bone marrow cells and CD34+CD38- multipotent progenitor cells for four T-ALL cases. Hierarchical clustering detected a dominant leukemia cluster at diagnosis, accompanied by a few smaller clusters harboring only a fraction of the mutations. We developed a graph-based algorithm to determine the order of mutation acquisition. Two of the four patients had an early event in a known oncogene (MED12, STAT5B) among various pre-leukemic events. Intermediate events included loss of 9p21 (CDKN2A/B) and acquisition of fusion genes, while NOTCH1 mutations were typically late events. Analysis of CD34+CD38- cells and myeloid progenitors revealed that in half of the cases somatic mutations were detectable in multipotent progenitor cells. We demonstrate that targeted single-cell sequencing can elucidate the order of mutation acquisition in T-ALL and that T-ALL development can start in a multipotent progenitor cell.


Subject(s)
Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , ADP-ribosyl Cyclase 1/analysis , Antigens, CD34/analysis , Gene Expression Profiling , Humans , Multipotent Stem Cells/metabolism , Receptor, Notch1/genetics , Whole Genome Sequencing
9.
Front Immunol ; 9: 16, 2018.
Article in English | MEDLINE | ID: mdl-29403498

ABSTRACT

The escape of anti-self B cells from tolerance mechanisms like clonal deletion, receptor editing, and anergy results in the production of autoantibodies, which is a hallmark of many autoimmune disorders. In this study, we demonstrate that both germline sequences and somatic mutations contribute to autospecificity of B cell clones. For this issue, we investigated the development of antinuclear autoantibodies (ANAs) and their repertoire in two different mouse models. First, in aging mice that were shown to gain several autoimmune features over time including ANAs. Second, in mice undergoing a chronic graft-versus-host disease (GVHD), thereby developing systemic lupus erythematosus-like symptoms. Detailed repertoire analysis revealed that somatic hypermutations (SHM) were present in all Vh and practically all Vl regions of ANAs generated in these two models. The ANA B cell repertoire in aging mice was restricted, dominated by clonally related Vh1-26/Vk4-74 antibodies. In the collection of GVHD-derived ANAs, the repertoire was less restricted, but the usage of the Vh1-26/Vk4-74 combination was still apparent. Germline conversion showed that the SHM in the 4-74 light chain are deterministic for autoreactivity. Detailed analysis revealed that antinuclear reactivity of these antibodies could be induced by a single amino acid substitution in the CDR1 of the Vk4-74. In both aging B6 and young GVHD mice, conversion of the somatic mutations in the Vh and Vl regions of non Vh1-26/Vk4-74 using antibodies showed that B cells with a germline-encoded V gene could also contribute to the ANA-reactive B cell repertoire. These findings indicate that two distinct pathways generate ANA-producing B cells in both model systems. In one pathway, they are generated by Vh1-26/Vk4-74 expressing B cells in the course of immune responses to an antigen that is neither a nuclear antigen nor any other self-antigen. In the other pathway, ANA-producing B cells are derived from progenitors in the bone marrow that express B cell receptors (BCRs), which bind to nuclear antigens and that escape tolerance induction, possibly as a result of crosslinking of their BCRs by multivalent determinants of nuclear antigens.


Subject(s)
Aging/immunology , Antibodies, Antinuclear/immunology , Antigens, Nuclear/immunology , Autoimmunity/genetics , B-Lymphocytes/immunology , Graft vs Host Disease/immunology , Amino Acid Substitution , Animals , Antibodies, Monoclonal/immunology , Autoimmunity/immunology , Histones/immunology , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Receptors, Antigen, B-Cell/immunology
10.
EMBO J ; 36(24): 3619-3633, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29030486

ABSTRACT

Single-cell RNA sequencing is a powerful technology for assessing heterogeneity within defined cell populations. Here, we describe the heterogeneity of a B220+CD117intCD19-NK1.1- uncommitted hematopoietic progenitor having combined lymphoid and myeloid potential. Phenotypic and functional assays revealed four subpopulations within the progenitor with distinct lineage developmental potentials. Among them, the Ly6D+SiglecH-CD11c- fraction was lymphoid-restricted exhibiting strong B-cell potential, whereas the Ly6D-SiglecH-CD11c- fraction showed mixed lympho-myeloid potential. Single-cell RNA sequencing of these subsets revealed that the latter population comprised a mixture of cells with distinct lymphoid and myeloid transcriptional signatures and identified a subgroup as the potential precursor of Ly6D+SiglecH-CD11c- Subsequent functional assays confirmed that B220+CD117intCD19-NK1.1- single cells are, with rare exceptions, not bipotent for lymphoid and myeloid lineages. A B-cell priming gradient was observed within the Ly6D+SiglecH-CD11c- subset and we propose a herein newly identified subgroup as the direct precursor of the first B-cell committed stage. Therefore, the apparent multipotency of B220+CD117intCD19-NK1.1- progenitors results from underlying heterogeneity at the single-cell level and highlights the validity of single-cell transcriptomics for resolving cellular heterogeneity and developmental relationships among hematopoietic progenitors.


Subject(s)
Hematopoietic Stem Cells/physiology , Sequence Analysis, RNA/methods , Animals , B-Lymphocytes/cytology , B-Lymphocytes/physiology , Cell Differentiation , Cell Lineage , Female , Gene Expression Profiling , Genetic Heterogeneity , Hematopoietic Stem Cells/cytology , High-Throughput Nucleotide Sequencing , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/physiology , Male , Mice, Inbred C57BL , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/physiology , Single-Cell Analysis
11.
Eur J Immunol ; 47(2): 394-405, 2017 02.
Article in English | MEDLINE | ID: mdl-27925658

ABSTRACT

Up to now long-term in vitro growth of pro-B cells was thought to require stromal cells. However, here we show that fetal liver (FL) and bone marrow (BM) derived pro-B cells can be propagated long-term in stromal cell-free cultures supplemented with IL-7, stem cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, CD79A, λ5, and VpreB antigens and had rearranged immunoglobulin D-J heavy chain genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of immuno-incompetent Rag2-deficient mice, with FL pro-B cells generating follicular, marginal zone (MZB) and B1a B cells, and BM pro-B cells giving rise mainly to MZB cells. Reconstituted Rag2-deficient mice generated significant levels of IgM and IgG antibodies to a type II T-independent antigen; mice reconstituted with FL pro-B cells generated surprisingly high IgG1 titers. Finally, we show for the first time that mice reconstituted with mixtures of pro-B and pro-T cells propagated in stromal cell-free in vitro cultures mounted a T-cell-dependent antibody response. This novel stromal cell-free culture system facilitates our understanding of B-cell development and might be applied clinically.


Subject(s)
B-Lymphocytes/immunology , Bone Marrow Cells/immunology , Precursor Cells, B-Lymphoid/immunology , Animals , Antibody Formation , Cell Differentiation , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/genetics , Interleukin-7/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor Cells, T-Lymphoid/immunology , Stem Cell Factor/metabolism , Stromal Cells/immunology , Transplantation Chimera
12.
Proc Natl Acad Sci U S A ; 113(50): E8122-E8130, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911806

ABSTRACT

Hematopoietic cells are continuously generated throughout life from hematopoietic stem cells, thus making hematopoiesis a favorable system to study developmental cell lineage commitment. The main factors incorporating environmental signals to developing hematopoietic cells are cytokines, which regulate commitment of hematopoietic progenitors to the different blood lineages by acting either in an instructive or a permissive manner. Fms-like tyrosine kinase-3 (Flt3) ligand (FL) and Interleukin-7 (IL-7) are cytokines pivotal for B-cell development, as manifested by the severely compromised B-cell development in their absence. However, their precise role in regulating B-cell commitment has been the subject of debate. In the present study we assessed the rescue of B-cell commitment in mice lacking IL-7 but simultaneously overexpressing FL. Results obtained demonstrate that FL overexpression in IL-7-deficient mice rescues B-cell commitment, resulting in significant Ebf1 and Pax5 expression in Ly6D+CD135+CD127+CD19- precursors and subsequent generation of normal numbers of CD19+ B-cell progenitors, therefore indicating that IL-7 can be dispensable for commitment to the B-cell lineage. Further analysis of Ly6D+CD135+CD127+CD19- progenitors in IL-7- or FL-deficient mice overexpressing Bcl2, as well as in IL-7 transgenic mice suggests that both FL and IL-7 regulate B-cell commitment in a permissive manner: FL by inducing proliferation of Ly6D+CD135+CD127+CD19- progenitors and IL-7 by providing survival signals to these progenitors.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Lineage/immunology , Interleukin-7/metabolism , Membrane Proteins/metabolism , Animals , Antigens, CD19/metabolism , Antigens, Ly/metabolism , B-Lymphocytes/metabolism , Cell Proliferation , Cell Survival , Female , GPI-Linked Proteins/metabolism , Hematopoiesis/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Interleukin-7/deficiency , Interleukin-7/genetics , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
13.
Crit Rev Clin Lab Sci ; 52(4): 168-79, 2015.
Article in English | MEDLINE | ID: mdl-26212176

ABSTRACT

For many years, developing hematopoietic cells have been strictly compartmentalized into a rare population of multi-potent self-renewing hematopoietic stem cells (HSC), multi-potent hematopoietic progenitor cells (MPP) that are undergoing commitment to particular lineage fates, and recognizable precursor cells that mature towards functional blood and immune cells. A single route to each end-cell type is prescribed in the "classical" model for the architecture of hematopoiesis. Recent findings have led to the viewpoint that HSCs and MPPs are more versatile than previously thought. Underlying this are multiple routes to a particular fate and cells having clandestine fate options even when they have progressed some way along a pathway. The primary role of cytokines during hematopoiesis has long been seen to be regulation of the survival and proliferation of developing hematopoietic cells. Some cytokines now clearly have instructive actions on cell-fate decisions. All this leads to a new way of viewing hematopoiesis whereby versatile HSC and MPP are directed towards lineage outcomes via cytokine regulated cell-fate decisions. This means greater flexibility to the shaping of hematopoiesis.


Subject(s)
Cytokines , Hematopoiesis , Stem Cells , Animals , Cell Differentiation , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...