Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 44(2): 197-211, 2017 02.
Article in English | MEDLINE | ID: mdl-27878454

ABSTRACT

The application of pectinases in industrial olive-oil processes is restricted by its production cost. Consequently, new fungal strains able to produce higher pectinase titers are required. The aim of this work was to study the capability of Aspergillus giganteus NRRL10 to produce pectinolytic enzymes by SSF and evaluate the application of these in olive-oil extraction. A. giganteus was selected among 12 strains on the basis of high pectinolytic activity and stability. A mixture composed by wheat bran, orange, and lemon peels was selected as the best substrate for enzyme production. Statistical analyses of the experimental design indicated that pH, temperature, and CaCl2 are the main factors that affect the production. Subsequently, different aeration flows were tested in a tray reactor; the highest activity was achieved at 20 L min-1 per kilogram of dry substrate (kgds). Finally, the pectinolytic enzymes from A. giganteus improved the oil yield and rheological characteristics without affecting oil chemical properties.


Subject(s)
Aspergillus/enzymology , Fermentation , Food Handling , Olive Oil , Polygalacturonase/biosynthesis , Aspergillus/classification , Bioreactors , Chemical Phenomena , Culture Media/chemistry , Hydrogen-Ion Concentration , Industrial Microbiology , Temperature
2.
Bioprocess Biosyst Eng ; 38(11): 2117-28, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26256022

ABSTRACT

The application of cellulases in saccharification processes is restricted by its production cost. Consequently, new fungal strains able to elaborate higher cellulases titers and with special activity profiles are required to make the process economical. The aim of this investigation was to find a promising wild-type Trichoderma strain for cellulases production. The Trichoderma reesei strain 938 (CBS 836.91) was selected among twenty strains on the basis of cellulase-agar-plate screening. Evaluation of the selected strain on six solid substrates indicated the highest activities to be obtained from wheat bran. Statistical analyses of the experimental design indicated a significant effect of pH and moisture on the generation of endoglucanase (EGA) and filter-paper (FPA) activity. Furthermore, a central-composite design-based optimization revealed that pH values between 6.4 and 6.6 and moisture from 74 to 94% were optimal for cellulases production. Under these conditions, 8-10 IU gds(-1) of FPA and 15.6-17.8 IU gds(-1) of EGA were obtained. In addition, cultivation in a rotating-drum reactor under optimal conditions gave 8.2 IU gds(-1) FPA and 13.5 IU gds(-1) EGA. Biochemical characterization of T. reesei 938 cellulases indicated a substantially higher resistance to 4 mM Fe(+2) and a slightly greater tolerance to alkaline pH in comparison to Celluclast(®). These results suggest that T. reesei 938 could be a promising candidate for improved cellulases production through direct-evolution strategies.


Subject(s)
Cellulases/biosynthesis , Dietary Fiber/metabolism , Fungal Proteins/biosynthesis , Trichoderma/growth & development
3.
Plant Physiol Biochem ; 45(1): 39-46, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17303429

ABSTRACT

In this work we investigated the involvement of Glomus intraradices in the regulation of plant growth, polyamines and proline levels of two Lotus glaber genotypes differing in salt tolerance, after longterm exposure to saline stress. The experiment consisted of a randomized block design with three factors: (1) mycorrhizal treatments (with or without AM fungus); (2) two salinity levels of 0 and 200mM NaCl; and (3) L. glaber genotype. Experiments were performed using stem cuttings derived from L. glaber individuals representing a natural population from saline lowlands. One of the most relevant results was the higher content of total free polyamines in mycorrhized plants compared to non-AM ones. Since polyamines have been proposed as candidates for the regulation of root development under saline situations, it is possible that AM plants (which contained higher polyamine levels and showed improved root growth) were better shaped to cope with salt stress. Colonization by G. intraradices also increased (Spd+Spm)/Put ratio in L. glaber roots. Interestingly, such increment in salt stressed AM plants of the sensitive genotype, was even higher than that produced by salinization or AM symbiosis separately. On the other hand, salinity but not mycorrhizal colonization influenced proline levels in both L. glaber genotypes since high proline accumulation was observed in both genotypes under salt stress conditions. Our results suggest that modulation of polyamine pools can be one of the mechanisms used by AM fungi to improve L. glaber adaptation to saline soils. Proline accumulation in response to salt stress is a good indicator of stress perception and our results suggest that it could be used as such among L. glaber genotypes differing in salt stress tolerance.


Subject(s)
Lotus/metabolism , Lotus/microbiology , Mycorrhizae/isolation & purification , Polyamines/metabolism , Sodium Chloride/pharmacology , Lotus/drug effects , Lotus/growth & development , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism
4.
FEMS Microbiol Lett ; 230(1): 115-21, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14734173

ABSTRACT

The pathways for putrescine biosynthesis and the effects of polyamine biosynthesis inhibitors on the germination and hyphal development of Gigaspora rosea spores were investigated. Incubation of spores with different radioactive substrates demonstrated that both arginine and ornithine decarboxylase pathways participate in putrescine biosynthesis in G. rosea. Spermidine and spermine were the most abundant polyamines in this fungus. The putrescine biosynthesis inhibitors alpha-difluoromethylarginine and alpha-difluoromethylornithine, as well as the spermidine synthase inhibitor cyclohexylamine, slightly decreased polyamine levels. However, only the latter interfered with spore germination. The consequences of the use of putrescine biosynthesis inhibitors for the control of plant pathogenic fungi on the viability of G. rosea spores in soil are discussed.


Subject(s)
Carboxy-Lyases/metabolism , Fungi/physiology , Ornithine Decarboxylase/metabolism , Polyamines/antagonists & inhibitors , Spores, Fungal/drug effects , Cyclohexylamines/pharmacology , Enzyme Inhibitors/pharmacology , Fungi/enzymology , Mycorrhizae , Polyamines/metabolism , Sorghum/microbiology , Spermidine Synthase/antagonists & inhibitors , Spores, Fungal/physiology , Trifolium/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...