Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Parkinsons Dis ; 8(1): 126, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36202848

ABSTRACT

Mutations in the GBA gene that encodes the lysosomal enzyme ß-glucocerebrosidase (GCase) are a major genetic risk factor for Parkinson's disease (PD). In this study, we generated a set of differentiated and stable human dopaminergic cell lines that express the two most prevalent GBA mutations as well as GBA knockout cell lines as a in vitro disease modeling system to study the relationship between mutant GBA and the abnormal accumulation of α-synuclein. We performed a deep analysis of the consequences triggered by the presence of mutant GBA protein and the loss of GCase activity in different cellular compartments, focusing primarily on the lysosomal compartment, and analyzed in detail the lysosomal activity, composition, and integrity. The loss of GCase activity generates extensive lysosomal dysfunction, promoting the loss of activity of other lysosomal enzymes, affecting lysosomal membrane stability, promoting intralysosomal pH changes, and favoring the intralysosomal accumulation of sphingolipids and cholesterol. These local events, occurring only at a subcellular level, lead to an impairment of autophagy pathways, particularly chaperone-mediated autophagy, the main α-synuclein degradative pathway. The findings of this study highlighted the role of lysosomal function and lipid metabolism in PD and allowed us to describe a molecular mechanism to understand how mutations in GBA can contribute to an abnormal accumulation of different α-synuclein neurotoxic species in PD pathology.

2.
Cells ; 11(13)2022 06 28.
Article in English | MEDLINE | ID: mdl-35805133

ABSTRACT

Irritable bowel syndrome (IBS) is a disorder of brain-gut interaction characterised by abdominal pain and changes in bowel habits. In the diarrhoea subtype (IBS-D), altered epithelial barrier and mucosal immune activation are associated with clinical manifestations. We aimed to further evaluate plasma cells and epithelial integrity to gain understanding of IBS-D pathophysiology. One mucosal jejunal biopsy and one stool sample were obtained from healthy controls and IBS-D patients. Gastrointestinal symptoms, stress, and depression scores were recorded. In the jejunal mucosa, RNAseq and gene set enrichment analyses were performed. A morphometric analysis by electron microscopy quantified plasma cell activation and proximity to enteric nerves and glycocalyx thickness. Immunoglobulins concentration was assessed in the stool. IBS-D patients showed differential expression of humoral pathways compared to controls. Activation and proximity of plasma cells to nerves and IgG concentration were also higher in IBS-D. Glycocalyx thickness was lower in IBS-D compared to controls, and this reduction correlated with plasma cell activation, proximity to nerves, and clinical symptoms. These results support humoral activity and loss of epithelial integrity as important contributors to gut dysfunction and clinical manifestations in IBS-D. Additional studies are needed to identify the triggers of these alterations to better define IBS-D pathophysiology.


Subject(s)
Irritable Bowel Syndrome , Diarrhea/complications , Glycocalyx/metabolism , Humans , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/complications , Nerve Fibers/pathology , Plasma Cells/metabolism
3.
Cells ; 11(10)2022 05 14.
Article in English | MEDLINE | ID: mdl-35626681

ABSTRACT

Eosinophils are innate immune granulocytes actively involved in defensive responses and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils modulate barrier function and mucosal immunity and promote tissue development through their direct communication with almost every cellular component. This is possible thanks to the variety of receptors they express and the bioactive molecules they store and release, including cytotoxic proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal function, with potential implications in pathophysiological processes. Eosinophil-neuron interactions are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory or inhibitory effects on each cell type, with physiological consequences dependent on the type of innervation involved. Of special interest are the disorders of the brain-gut interaction (DBGIs), mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia and eosinophil activation have been identified. In this review, we summarize the main roles of gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil-neuron interactions to bring new insights that support the fundamental role of this neuro-immune crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.


Subject(s)
Eosinophils , Irritable Bowel Syndrome , Brain , Humans , Leukocyte Count
4.
Front Nutr ; 8: 718093, 2021.
Article in English | MEDLINE | ID: mdl-34778332

ABSTRACT

There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.

5.
Adv Ther ; 38(5): 2054-2076, 2021 05.
Article in English | MEDLINE | ID: mdl-33738725

ABSTRACT

Chronic diarrhea is a frequent presenting symptom, both in primary care medicine and in specialized gastroenterology units. It is estimated that more than 5% of the global population suffers from chronic diarrhea. and that about 40% of these subjects are older than 60 years. The clinician is frequently faced with the need to decide which is the best therapeutic approach for these patients. While the origin of chronic diarrhea is diverse, impairment of intestinal barrier function, dysbiosis. and mucosal micro-inflammation are being increasingly recognized as underlying phenomena characterizing a variety of chronic diarrheal diseases. In addition to current pharmacological therapies, there is growing interest in alternative products such as mucoprotectants, which form a mucoadhesive film over the epithelium to reduce and protect against the development of altered intestinal permeability, dysbiosis, and mucosal micro-inflammation. This manuscript focuses on chronic diarrhea in adults, and we will review recent evidence on the ability of these natural compounds to improve symptoms associated with chronic diarrhea and to exert protective effects for the intestinal barrier.


Subject(s)
Irritable Bowel Syndrome , Adult , Diarrhea/drug therapy , Humans , Intestinal Mucosa , Irritable Bowel Syndrome/drug therapy , Permeability
6.
Cells ; 8(2)2019 02 08.
Article in English | MEDLINE | ID: mdl-30744042

ABSTRACT

The gastrointestinal tract harbours the largest population of mast cells in the body; this highly specialised leukocyte cell type is able to adapt its phenotype and function to the microenvironment in which it resides. Mast cells react to external and internal stimuli thanks to the variety of receptors they express, and carry out effector and regulatory tasks by means of the mediators of different natures they produce. Mast cells are fundamental elements of the intestinal barrier as they regulate epithelial function and integrity, modulate both innate and adaptive mucosal immunity, and maintain neuro-immune interactions, which are key to functioning of the gut. Disruption of the intestinal barrier is associated with increased passage of luminal antigens into the mucosa, which further facilitates mucosal mast cell activation, inflammatory responses, and altered mast cell⁻enteric nerve interaction. Despite intensive research showing gut dysfunction to be associated with increased intestinal permeability and mucosal mast cell activation, the specific mechanisms linking mast cell activity with altered intestinal barrier in human disease remain unclear. This review describes the role played by mast cells in control of the intestinal mucosal barrier and their contribution to digestive diseases.


Subject(s)
Homeostasis , Intestinal Mucosa/cytology , Mast Cells/metabolism , Animals , Epithelium/metabolism , Humans , Immunity, Mucosal , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...