Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 132(2): 159-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25319628

ABSTRACT

Zinc (Zn(2+) ) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn(2+) homeostasis is critical and involves different classes of molecules, including Zn(2+) transporters. The ubiquitous Zn(2+) transporter-1 (ZNT-1) is a transmembrane protein that pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT-1 interacts with GluN2A-containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT-1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two-hybrid screening, coimmunoprecipitation experiments and clustering assay in COS-7 cells demonstrated that ZNT-1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull-down assays indicated GluN2A(1390-1464) domain as necessary for the binding to ZNT-1. Most importantly, ZNT-1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT-1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD-95 clusters and GluN2A surface levels, supporting the involvement of ZNT-1 in the dynamics of excitatory PSD. Zn(2+) transporter-1 (ZNT-1) pumps cytosolic Zn(2+) to the extracellular space, but its function in the central nervous system is not fully understood. We show that ZNT-1 interacts with GluN2A-containing NMDA receptors at the glutamatergic synapse. Most importantly, ZNT-1/GluN2A complex is regulated by induction of synaptic plasticity. Modulation of ZNT-1 expression in hippocampal neurons determined a shrinkage of dendritic spines and a reduction of GluN2A surface levels supporting the involvement of ZNT-1 in the dynamics of the excitatory synapse.


Subject(s)
Cation Transport Proteins/metabolism , Nerve Tissue Proteins/metabolism , Post-Synaptic Density/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , COS Cells , Calcium/metabolism , Chlorocebus aethiops , Dendrites/ultrastructure , Excitatory Postsynaptic Potentials/physiology , Female , Hippocampus/cytology , Hippocampus/metabolism , Ion Transport , Male , Neuronal Plasticity , Pregnancy , Primary Cell Culture , Protein Interaction Mapping , Rats , Rats, Sprague-Dawley , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...