Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 98(3): 578-83, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12650431

ABSTRACT

OBJECT: Cerebrospinal fluid (CSF) shunt system malfunction due to silastic tubing fracture necessitates revision surgery in shunt-dependent individuals. The goal of this study was to examine the mechanical stretching and breaking characteristics of new and used CSF shunt tubing catheters to determine if any inherent physical properties predispose the tubing to fracture. METHODS: Fifty-millimeter segments of new and retrieved (used) CSF shunt tubing were stretched to 120 mm in a hydraulic press to determine modulus values (modulus = stress/strain) and to measure permanent tubing deformation imparted by the applied stress and strain. Similar 50-mm tubing segments were also stretched in an electromechanical material testing system until fracture occurred; the force and strain needed to break the tubing was recorded at the time of failure. The results demonstrate that shunt tubing with a greater cross-sectional area requires greater force to fracture, and that catheters become weaker the longer they are implanted. Barium-impregnated shunt tubing, compared with translucent tubing. appears to require less applied stress and strain to break and may fracture more easily in vivo. The variety of modulus values obtained for the new catheters tested indicates that the various companies may be using materials of different quality in tubing manufacture. CONCLUSIONS: A CSF shunt catheter design that incorporates tubing with a greater cross-sectional area may lead to fewer fractures of indwelling catheters and a reduction in shunt revision surgery.


Subject(s)
Cerebrospinal Fluid Shunts/adverse effects , Equipment Design , Equipment Failure , Humans , Materials Testing , Tensile Strength
2.
J Oral Maxillofac Surg ; 61(1): 79-88, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12524613

ABSTRACT

PURPOSE: This study was conducted to examine a biomechanical model and to help answer fundamental questions that relate to rigid plate fixation in the maxilla. Specifically, we sought to elucidate the principal strain patterns generated in the maxilla secondary to masticatory forces as well as the amount of permanent deformational changes incurred due to these loading forces. MATERIALS AND METHODS: Cadaveric heads with the mandible removed were defleshed and placed in a 2-part testing rig to hold and position the skull for testing in a standard material testing system. Rosette strain gages were attached at predefined points on the skull, and an Instron machine was used to load the skull through the loading port on the tray. A Le Fort I osteotomy was then performed on the skull, and a Walter Lorenz Ultra-Micro plating system was applied by a surgeon to reconnect the upper jaw. A 2-mm gap was left at the line of the osteotomy, and a transducer was attached to measure closure of the gap. Again the skull was loaded with the Instron (Canton, MA) machine. RESULTS: The results indicate a linear relationship exists with both maximum (tensile) and minimum (compressive) strain patterns relative to incremental load placement on the intact maxilla. The strain patterns after the Le Fort I osteotomy and plating were different and less linear. The differential variable reluctance transducer data showed a low rate of closure or transient increase in the gap at low loads (0 to 15 kilopond [kp] range) and a steeper slope of closure during high loads (15 to 60 kp range). It is also evident that axial loading forces cause permanent deformation and failure of osseous plating systems predominantly through bending. CONCLUSIONS: This model provides a foundation of knowledge regarding biomechanical strains in the maxilla subjected to static compressive loads in the force range of mastication. In addition, it serves as a comparative reference to assess rigidity of various craniofacial plating systems and to validate proposed standardized synthetic models. With the advent of increasingly precise surgery and new plating systems, this model can be used to help guide placement and design of plating systems; thereby allowing for ideal stabilization and optimizing surgical outcome.


Subject(s)
Bone Plates , Maxilla/physiology , Models, Biological , Aged , Aged, 80 and over , Algorithms , Biomechanical Phenomena , Bite Force , Cadaver , Dental Stress Analysis/instrumentation , Elasticity , Female , Humans , Male , Mastication/physiology , Maxilla/surgery , Orbit/physiology , Osteotomy, Le Fort/instrumentation , Osteotomy, Le Fort/methods , Palate, Hard/physiology , Pliability , Stress, Mechanical , Transducers , Weight-Bearing , Zygoma/physiology
3.
Med Sci Sports Exerc ; 34(1): 123-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11782657

ABSTRACT

PURPOSE: Running over obstacles of sufficient height requires heel strike (HS) runners to make a transition in landing strategy to a forefoot (FF) strike, resulting in similar ground reaction force patterns to those observed while landing from a jump. Identification of the biomechanical variables that distinguish between the landing strategies may offer some insight into the reasons that the transition occurs. The purpose of this study was to investigate the difference in foot strike patterns and kinetic parameters of heel strike runners between level running and running over obstacles of various heights. METHODS: Ten heel strike subjects ran at their self-selected pace under seven different conditions: unperturbed running (no obstacle) and over obstacles of six different heights (10%, 12.5%, 15%, 17.5%, 20%, and 22.5% of their standing height). The obstacle was placed directly before a Kistler force platform. Repeated measures ANOVAs were performed on the subject means of selected kinetic parameters. RESULTS: The statistical analysis revealed significant differences (P < 0.004) for all of the parameters analyzed. The evaluation of the center of pressure and the ground reaction forces indicated that the foot strike patterns were affected by the increased obstacle height. Between the 12.5% and 15% obstacle conditions, the group response changed from a heel strike to a forefoot strike pattern. CONCLUSIONS: At height > 15%, the pattern was more closely related to the foot strike patterns found in jumping activities. This strategy change may represent a gait transition effected as a mechanism to protect against increased impact forces. Greater involvement of the ankle and the calf muscles could have assisted in attenuating the increased impact forces while maintaining speed after clearing the obstacle.


Subject(s)
Foot/physiology , Gait/physiology , Motor Activity/physiology , Running/physiology , Adult , Female , Heel/physiology , Humans , Kinetics , Male , Pressure , Stress, Mechanical
4.
Tissue Eng ; 8(6): 955-68, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12542941

ABSTRACT

This study sought to compare differences in neocartilage produced over time from two types of resorbable scaffold materials. One material was entirely synthetic and contained a polyglycolic acid-poly-L-lactic acid matrix (PGA-PLLA). The second scaffold material was bioactive and consisted of a four-layered construct of porcine small intestinal submucosa (SIS). Disk-shaped scaffolds were seeded with canine chondrocytes and implanted into athymic mice for periods of 5, 8, 12, and 24 weeks. Constructs were examined microscopically, assayed for hydroxyproline (HP) and glycosaminoglycan (GAG) content, and collagen typed (I or II) at each time period. Creep indentation tests determined aggregate and shear modulus, permeability, and thickness. Results indicated that SIS maintained its thickness through the first 12 weeks, and then doubled by week 24. The 24-week tissue appeared chondroid-like and possessed high GAG content. Tissues derived from PGA-PLLA scaffolds were lower in HP content than SIS-derived tissues, but type II collagen was demonstrated only in PGA-PLLA-derived tissues at 24 weeks. Mechanical properties were not significantly different for any tissue over time (p > 0.05), but aggregate and shear modulus mean values were consistently higher for PGA-PLLA-derived tissues at nearly every time interval. This, coupled with the presence of collagen types I and II, suggested a more congruent solid phase may be forming within the extracellular matrix of tissues derived from PGA-PLLA scaffolds. Future study is necessary to compare these materials under simulated loading conditions.


Subject(s)
Cartilage/physiology , Intestine, Small/physiology , Lactic Acid , Polyglycolic Acid , Polymers , Tissue Engineering , Animals , Chondrocytes/physiology , Chondrocytes/transplantation , Dogs , Mice , Polyesters , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...