Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6509, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499566

ABSTRACT

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Subject(s)
Cocaine , Receptors, Opioid, kappa , Rats , Animals , Receptors, Opioid, kappa/metabolism , Dopamine Plasma Membrane Transport Proteins , Motivation , Dopamine/pharmacology , Rats, Sprague-Dawley , Phenmetrazine/pharmacology , Cocaine/pharmacology , Nucleus Accumbens/metabolism , Self Administration
2.
Drug Alcohol Depend ; 251: 110960, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37703771

ABSTRACT

BACKGROUND: Preclinical models of cocaine use disorder (CUD) have not yielded any FDA-approved pharmacotherapies, potentially due to a focus on cocaine use in isolation, which may not fully translate to real-world drug taking patterns. Cocaine and nicotine are commonly used together, and clinical research suggests that nicotine may increase the potency and reinforcing strength of cocaine. In this study, we sought to determine whether and how the addition of nicotine would alter ongoing intravenous cocaine self-administration and motivation to take cocaine in rats. METHODS: Male Sprague-Dawley rats self-administered cocaine alone on a long access, Fixed Ratio one (FR1) schedule, and then switched to a combination of cocaine and nicotine. Finally, rats responded on a Progressive Ratio (PR) schedule for several doses of cocaine alone and in combination with a single dose of nicotine. RESULTS: Under long access conditions, rats co-self-administering cocaine and nicotine responded less and with decreased response rates than for cocaine alone and did not escalate responding. However, under PR conditions that test motivation to take drugs, the dose response curve for the combination was shifted upwards relative to cocaine alone. CONCLUSIONS: Together, these results suggest that nicotine may enhance the reinforcing strength of cocaine, increasing PR responding for cocaine across the dose response curve.


Subject(s)
Cocaine-Related Disorders , Cocaine , Substance-Related Disorders , Rats , Male , Animals , Nicotine , Rats, Sprague-Dawley , Cocaine-Related Disorders/drug therapy , Substance-Related Disorders/drug therapy , Self Administration/methods , Dose-Response Relationship, Drug , Reinforcement Schedule , Conditioning, Operant
3.
Neuropharmacology ; 212: 109066, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35461879

ABSTRACT

Many tobacco smokers consume nicotine intermittently, but the underlying mechanisms and neurobiological changes associated with intermittent nicotine intake are unclear. Understanding intermittent nicotine intake is a high priority, as it could promote therapeutic strategies to attenuate tobacco consumption. We examined nicotine intake behavior and neurobiological changes in male rats that were trained to self-administer nicotine during brief (5 min) trials interspersed with longer (15 min) drug-free periods. Rats readily adapted to intermittent access (IntA) SA following acquisition on a continuous access (ContA) schedule. Probabilistic analysis of IntA nicotine SA suggested reduced nicotine loading behavior compared to ContA, and nicotine pharmacokinetic modeling revealed that rats taking nicotine intermittently may have increased intake to maintain blood levels of nicotine that are comparable to ContA SA. After IntA nicotine SA, rats exhibited an increase in unreinforced responses for nicotine-associated cues (incubation of craving) and specific alterations in the striatal proteome after 7 days without nicotine. IntA nicotine SA also induced nAChR functional upregulation in the interpeduncular nucleus (IPN), and it enhanced nicotine binding in the brain as determined via [11C]nicotine positron emission tomography. Reducing the saliency of the cue conditions during the 5 min access periods attenuated nicotine intake, but incubation of craving was preserved. Together, these results indicate that IntA conditions promote nicotine SA and nicotine seeking after a nicotine-free period.


Subject(s)
Interpeduncular Nucleus , Nicotine , Animals , Behavior, Animal , Drug-Seeking Behavior , Interpeduncular Nucleus/metabolism , Male , Rats , Recurrence , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...