Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1313: 342759, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38862207

ABSTRACT

BACKGROUND: Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS: The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 µL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY: This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.


Subject(s)
Extracellular Vesicles , Milk, Human , Oxylipins , Tandem Mass Spectrometry , Humans , Milk, Human/chemistry , Oxylipins/analysis , Oxylipins/chemistry , Extracellular Vesicles/chemistry , Chromatography, High Pressure Liquid , Female
2.
Antioxid Redox Signal ; 40(7-9): 453-459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37603496

ABSTRACT

Fetal hemoglobin (HbF) has a higher affinity to oxygen than adult hemoglobin, allowing for a slower oxygen transfer to peripheral tissue, creating a microenvironment conducive to adequate fetal development in utero. However, most preterm infants receive packed red blood cell transfusions from adult donors leading to a drastic nonphysiological descent of circulating HbF. We hypothesized that this drop could enhance oxygen delivery to peripheral tissues generating a hyperoxic pro-oxidant environment. To investigate this, we assessed differences in oxidative stress biomarkers determined in urine samples in a cohort of 56 preterm infants born <32 weeks' gestation. Median oxidative stress biomarkers were compared between patients with circulating HbF above or below median HbF levels using Wilcoxon rank sum test. Oxidative stress biomarkers were significantly higher in the group of patients with lower levels of HbF. This study provides the initial evidence indicating elevated levels of oxidative stress biomarkers in preterm neonates with lower HbF levels. Based on the results, we hypothesize that HbF may contribute to preventing free radical-associated conditions during the newborn period. Antioxid. Redox Signal. 40, 453-459.


Subject(s)
Fetal Hemoglobin , Infant, Premature , Adult , Humans , Infant, Newborn , Fetal Hemoglobin/analysis , Fetal Hemoglobin/metabolism , Oxidative Stress , Oxygen , Biomarkers
3.
Front Immunol ; 14: 1293737, 2023.
Article in English | MEDLINE | ID: mdl-38054009

ABSTRACT

Introduction: Premature infants (PIs) are at risk of suffering necrotizing enterocolitis (NEC), and infants consuming human milk (HM) show a lower incidence than infants receiving formula. The composition of HM has been studied in depth, but the lipid content of HM-derived small extracellular vesicles (HM sEVs) remains unexplored. Identifying these molecules and their biological effects has potential for the treatment of intestinal disorders in PIs and could contribute to the development of HM-based fortified formulas. Methods: We isolated HM sEVs from HM samples and analyzed their oxylipin content using liquid chromatography coupled to mass spectrometry, which revealed the presence of anti-inflammatory oxylipins. We then examined the efficacy of a mixture of these oxylipins in combating inflammation and fibrosis, in vitro and in a murine model of inflammatory bowel disease (IBD). Results: HM-related sEVs contained higher concentrations of oxylipins derived from docosahexaenoic acid, an omega-3 fatty acid. Three anti-inflammatory oxylipins, 14-HDHA, 17-HDHA, and 19,20-DiHDPA (ω3 OXLP), demonstrated similar efficacy to HM sEVs in preventing cell injury, inducing re-epithelialization, mitigating fibrosis, and modulating immune responses. Both ω3 OXLP and HM sEVs effectively reduced inflammation in IBD-model mice, preventing colon shortening, infiltration of inflammatory cells and tissue fibrosis. Discussion: Incorporating this unique cocktail of oxylipins into fortified milk formulas might reduce the risk of NEC in PIs and also provide immunological and neurodevelopmental support.


Subject(s)
Fatty Acids, Omega-3 , Inflammatory Bowel Diseases , Infant , Humans , Infant, Newborn , Animals , Mice , Milk, Human , Oxylipins , Inflammation , Anti-Inflammatory Agents/pharmacology , Fibrosis
4.
Front Pediatr ; 11: 1269797, 2023.
Article in English | MEDLINE | ID: mdl-37900679

ABSTRACT

Background: Currently, the treatment of anemia in preterm infants is based on packed red blood cell (RBC) transfusions from adult donors. Oxygen (O2) is mainly transported to the tissues bound to hemoglobin (Hb). In extremely low gestational age neonates (ELGANs), fetal hemoglobin (HbF), which has a higher affinity for O2, represents up to 95% of circulating hemoglobin. During the first month of life, the majority of ELGANs will require an adult-donor RBC transfusion causing HbF levels to rapidly drop. HbA releases 50% more oxygen in peripheral tissues than HbF. Increased release of O2 in the retina is one of the main factors related to the development of retinopathy of prematurity (ROP). Collecting umbilical cord blood and using autologous umbilical cord whole blood (UCB) transfusions would contribute to maintaining physiological HbF concentrations in newborns and avoid oxygen-in-excess derived damage. Methods: This is a randomized, double-blinded, multicenter clinical trial. ELGANs ≤28 weeks of gestational age will be randomized 1:1 to receive an autologous umbilical cord blood transfusion (intervention arm) or standard transfusion of packed RBC from an adult donor (control arm) to assess ROP development. Assuming a 50% reduction in ROP incidence, 134 patients (67 per group) will be recruited. When blood transfusion is indicated, the Blook Bank will supply UCB or RCB according to the patient's group. The primary endpoint is the incidence of any ROP. Secondary endpoints are assessessment of treatment safety, results of biomarkers related to ROP and its chronology, and urine oxidative stress markers. In addition, the cellular composition of umbilical cord blood and its relationship with prematurity-related pathologies will be analyzed. All patients will be followed-up to 24 months of corrected age to evaluate their neurodevelopment. Discussion: ROP is a major cause of irreversible blindness in preterm newborns. Transfusions with adult donor blood can lead to complications, including ROP. UCB transfusions offer advantages by maintaining physiological HbF levels and potentially optimizing postnatal development. Moreover, autologous UCB transfusion could reduce risks associated with heterologous blood products, although volume collection remains challenging. UCB contains growth factors and progenitor cells that may impact ROP.

5.
Methods Mol Biol ; 2571: 177-188, 2023.
Article in English | MEDLINE | ID: mdl-36152162

ABSTRACT

Extracellular vesicles (EVs) are secreted by cells and can be found in biological fluids (e.g., blood, saliva, urine, cerebrospinal fluid, and milk). EV isolation needs to be optimized carefully depending on the type of biofluid and tissue. Human milk (HM) is known to be a rich source of EVs, and they are thought to be partially responsible for the benefits associated with breastfeeding. Here, a workflow for the isolation and lipidomic analysis of HM-EVs is described. The procedure encompasses initial steps such as sample collection and storage, a detailed description for HM-EV isolation by multistage ultracentrifugation, metabolite extraction, and analysis by liquid chromatography coupled to mass spectrometry, as well as data analysis and curation.


Subject(s)
Extracellular Vesicles , Lipidomics , Chromatography, Liquid/methods , Extracellular Vesicles/metabolism , Humans , Mass Spectrometry , Milk, Human
6.
Antioxidants (Basel) ; 11(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35204182

ABSTRACT

Fetuses with congenital heart disease (CHD) have circulatory changes that may lead to predictable blood flow disturbances that may affect normal brain development. Hypoxemia and hypoperfusion may alter the redox balance leading to oxidative stress (OS), that can be assessed measuring stable end-products. OS biomarkers (OSB) were measured in amniotic fluid in fetuses with (n = 41) and without CHD (n = 44) and analyzed according to aortic flow, expected cyanosis after birth, and a CHD classification derived from this. Birth head circumference (HC) was used as a neurodevelopment biomarker. CHD fetuses had higher levels of ortho-Tyrosine (o-Tyr) than controls (p = 0.0003). There were no differences in o-Tyr levels considering aortic flow obstruction (p = 0.617). Fetuses with expected extreme cyanosis presented the highest levels of o-Tyr (p = 0.003). Among groups of CHD, fetuses without aortic obstruction and extreme cyanosis had the highest levels of o-Tyr (p = 0.005). CHD patients had lower HC than controls (p = 0.023), without correlation with OSB. Patients with HC < 10th percentile, presented high levels of o-Tyr (p = 0.024). Fetuses with CHD showed increased OSB and lower HC when compared to controls, especially those with expected extreme cyanosis. Our results suggest that increased levels of OSB are more influenced by the effect of low oxygenation than by aortic flow obstruction. Future studies with larger sample size are needed to further investigate the role of OSB as an early predictor of neurodevelopmental problems in CHD survivors.

7.
Chemosphere ; 295: 133880, 2022 May.
Article in English | MEDLINE | ID: mdl-35150700

ABSTRACT

Human biomonitoring (HBM) is a very useful tool for assessing human exposure to acrylamide (AA). In the framework of the Human Biomonitoring Initiative (HBM4EU) AA was included in its second list of priority substances due to the potential threat to human health. HBM data on AA are scarce, but the use of specific and sensitive biomarkers represents a reliable indicator of exposure. In this review an overview of available knowledge on HBM of AA is provided in terms of: i) preferred exposure biomarkers and matrices for the HBM of AA; ii) analytical methods for determining its biomarkers of exposure in the most used specimens; iii) current HBM data available; and iv) tools for interpreting HBM data for AA in relation to risk assessment. Finally, future trends in this field are discussed.


Subject(s)
Acrylamide , Biological Monitoring , Biomarkers , Environmental Monitoring/methods , Humans , Risk Assessment
8.
Free Radic Biol Med ; 179: 164-169, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34971756

ABSTRACT

Oxidative stress in the fetal period is associated with preterm birth as well as short and long-term adverse clinical outcomes. Here, an Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) method for the simultaneous quantification of biomarkers of oxidative stress-derived damage to proteins and DNA in amniotic fluid (AF) samples is presented. Appropriate accuracy and precision levels, as well as sensitivity with limits of detection in the low nanomolar (<2 nM) range were achieved. The analytical method was applied to a set of AF samples and reference ranges of the biomarker panel are presented. Median concentrations of biomarkers of protein oxidation (ortho-, 3-chloro-, and 3-nitrotyrosine) and their precursors (para-tyrosine and phenylalanine) ranged between 0.6 and 3 nM and 23 and 30 µM, respectively, while levels of a biomarker of DNA-oxidation (8-hydroxydeoxyguanosine, 8OHdG) and its precursor (2'-deoxyguanosine) were found to be 0.18 and 3 nM, respectively. Detection frequencies of all metabolites were 100% with exception of 3-chlorotyrosine (3Cl-Tyr) and 8OHdG, that were only detected in 8% of samples. The developed method may be applied in research studies focusing on oxidative stress-related complications during pregnancy.


Subject(s)
Premature Birth , Tandem Mass Spectrometry , Amniotic Fluid , Biomarkers , Chromatography, High Pressure Liquid , Chromatography, Liquid , Female , Humans , Infant, Newborn , Oxidative Stress , Pregnancy
9.
Pediatr Res ; 91(3): 598-605, 2022 02.
Article in English | MEDLINE | ID: mdl-33953355

ABSTRACT

BACKGROUND: Infants with moderate and severe neonatal encephalopathy (NE) frequently suffer from long-term adverse outcomes. We hypothesize that the urinary metabolome of newborns with NE reflects the evolution of injury patterns observed with magnetic resonance imaging (MRI). METHODS: Eligible patients were newborn infants with perinatal asphyxia evolving to NE and qualifying for therapeutic hypothermia (TH) included in the HYPOTOP trial. MRI was employed for characterizing brain injury. Urine samples of 55 infants were collected before, during, and after TH. Metabolic profiles of samples were recorded employing three complementary mass spectrometry-based assays, and the alteration of detected metabolic features between groups was assessed. RESULTS: The longitudinal assessment revealed significant perturbations of the urinary metabolome. After 24 h of TH, a stable disease pattern evolved characterized by the alterations of 4-8% of metabolic features related to lipid metabolism, metabolism of cofactors and vitamins, glycan biosynthesis and metabolism, amino acid metabolism, and nucleotide metabolism. Characteristic metabolomic fingerprints were observed for different MRI injury patterns. CONCLUSIONS: This study shows the potential of urinary metabolic profiles for the noninvasive monitoring of brain injury of infants with NE during TH. IMPACT: A comprehensive approach for the study of the urinary metabolome was employed involving a semi-targeted capillary electrophoresis-time-of-flight mass spectrometry (TOFMS) assay, an untargeted ultra-performance liquid chromatography (UPLC)-quadrupole TOFMS assay, and a targeted UPLC-tandem MS-based method for the quantification of amino acids. The longitudinal study of the urinary metabolome identified dynamic metabolic changes between birth and until 96 h after the initiation of TH. The identification of altered metabolic pathways in newborns with pathologic MRI outcomes might offer the possibility of developing noninvasive monitoring approaches for personalized adjustment of the treatment and for supporting early outcome prediction.


Subject(s)
Asphyxia Neonatorum , Brain Injuries , Hypothermia, Induced , Asphyxia Neonatorum/metabolism , Asphyxia Neonatorum/urine , Brain Diseases/metabolism , Brain Diseases/urine , Brain Injuries/metabolism , Brain Injuries/urine , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Metabolome , Metabolomics/methods , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...