Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 41(17): 4099-102, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607982

ABSTRACT

We suggest a novel switchable plasmonic dipole nanoantenna operating at mid-infrared frequencies that exploits phase-change materials. We show that the induced dipole moments of a nanoantenna, where a germanium antimony telluride (Ge3Sb2Te6 or GST for short) nanopatch acts as a spacer between two coupled metallic nanopatches, can be controlled in a disruptive sense. By switching GST between its crystalline and amorphous phases, the nanoantenna can exhibit either an electric or a balanced magneto-electric dipole-like radiation. While the former radiation pattern is omnidirectional, the latter is directive. Based on this property exciting switching devices can be perceived, such as a metasurface whose functionality can be switched between an absorber and a reflector. The switching between stable amorphous and crystalline phases occurs on timescales of nanoseconds and can be achieved by an electrical or optical pulse.

2.
Sci Rep ; 4: 4484, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670919

ABSTRACT

Understanding the impact of order and disorder is of fundamental importance to perceive and to appreciate the functionality of modern photonic metasurfaces. Metasurfaces with disordered and amorphous inner arrangements promise to mitigate problems that arise for their counterparts with strictly periodic lattices of elementary unit cells such as, e.g., spatial dispersion, and allows the use of fabrication techniques that are suitable for large scale and cheap fabrication of metasurfaces. In this study, we analytically, numerically and experimentally investigate metasurfaces with different lattice arrangements and uncover the influence of lattice disorder on their electromagnetic properties. The considered metasurfaces are composed of metal-dielectric-metal elements that sustain both electric and magnetic resonances. Emphasis is placed on understanding the effect of the transition of the lattice symmetry from a periodic to an amorphous state and on studying oblique illumination. For this scenario, we develop a powerful analytical model that yields, for the first time, an adequate description of the scattering properties of amorphous metasurfaces, paving the way for their integration into future applications.

3.
Opt Express ; 20(20): 21888-95, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23037338

ABSTRACT

In this work we theoretically reveal the huge local field enhancement in a so-called perfect plasmonic absorber. We study the power absorption of light in a planar grid modelled as an effective sheet with zero optical thickness. The key prerequisite of the total absorption is the simultaneous presence of both resonant electric and magnetic modes in the structure. We show that the needed level of the magnetic mode is achievable using the effect of substrate-induced bianisotropy. On the microscopic level this bianisotropy is a factor which results in the huge local field enhancement at the same wavelength where the maximal absorption holds.


Subject(s)
Models, Theoretical , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods , Absorption , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...