Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Trials ; 25(1): 296, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698442

ABSTRACT

BACKGROUND: The optimal amount and timing of protein intake in critically ill patients are unknown. REPLENISH (Replacing Protein via Enteral Nutrition in a Stepwise Approach in Critically Ill Patients) trial evaluates whether supplemental enteral protein added to standard enteral nutrition to achieve a high amount of enteral protein given from ICU day five until ICU discharge or ICU day 90 as compared to no supplemental enteral protein to achieve a moderate amount of enteral protein would reduce all-cause 90-day mortality in adult critically ill mechanically ventilated patients. METHODS: In this multicenter randomized trial, critically ill patients will be randomized to receive supplemental enteral protein (1.2 g/kg/day) added to standard enteral nutrition to achieve a high amount of enteral protein (range of 2-2.4 g/kg/day) or no supplemental enteral protein to achieve a moderate amount of enteral protein (0.8-1.2 g/kg/day). The primary outcome is 90-day all-cause mortality; other outcomes include functional and health-related quality-of-life assessments at 90 days. The study sample size of 2502 patients will have 80% power to detect a 5% absolute risk reduction in 90-day mortality from 30 to 25%. Consistent with international guidelines, this statistical analysis plan specifies the methods for evaluating primary and secondary outcomes and subgroups. Applying this statistical analysis plan to the REPLENISH trial will facilitate unbiased analyses of clinical data. CONCLUSION: Ethics approval was obtained from the institutional review board, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia (RC19/414/R). Approvals were also obtained from the institutional review boards of each participating institution. Our findings will be disseminated in an international peer-reviewed journal and presented at relevant conferences and meetings. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04475666 . Registered on July 17, 2020.


Subject(s)
Critical Illness , Dietary Proteins , Enteral Nutrition , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Humans , Enteral Nutrition/methods , Dietary Proteins/administration & dosage , Data Interpretation, Statistical , Intensive Care Units , Quality of Life , Treatment Outcome , Respiration, Artificial , Time Factors
2.
Intensive Care Med ; 49(3): 302-312, 2023 03.
Article in English | MEDLINE | ID: mdl-36820878

ABSTRACT

PURPOSE: To evaluate whether helmet noninvasive ventilation compared to usual respiratory support reduces 180-day mortality and improves health-related quality of life (HRQoL) in patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. METHODS: This is a pre-planned follow-up study of the Helmet-COVID trial. In this multicenter, randomized clinical trial, adults with acute hypoxemic respiratory failure (n = 320) due to coronavirus disease 2019 (COVID-19) were randomized to receive helmet noninvasive ventilation or usual respiratory support. The modified intention-to-treat population consisted of all enrolled patients except three who were lost at follow-up. The study outcomes were 180-day mortality, EuroQoL (EQ)-5D-5L index values, and EQ-visual analog scale (EQ-VAS). In the modified intention-to-treat analysis, non-survivors were assigned a value of 0 for EQ-5D-5L and EQ-VAS. RESULTS: Within 180 days, 63/159 patients (39.6%) died in the helmet noninvasive ventilation group compared to 65/158 patients (41.1%) in the usual respiratory support group (risk difference - 1.5% (95% confidence interval [CI] - 12.3, 9.3, p = 0.78). In the modified intention-to-treat analysis, patients in the helmet noninvasive ventilation and the usual respiratory support groups did not differ in EQ-5D-5L index values (median 0.68 [IQR 0.00, 1.00], compared to 0.67 [IQR 0.00, 1.00], median difference 0.00 [95% CI - 0.32, 0.32; p = 0.91]) or EQ-VAS scores (median 70 [IQR 0, 93], compared to 70 [IQR 0, 90], median difference 0.00 (95% CI - 31.92, 31.92; p = 0.55). CONCLUSIONS: Helmet noninvasive ventilation did not reduce 180-day mortality or improve HRQoL compared to usual respiratory support among patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Humans , COVID-19/therapy , Follow-Up Studies , Head Protective Devices , Quality of Life , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
3.
JAMA ; 328(11): 1063-1072, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36125473

ABSTRACT

Importance: Helmet noninvasive ventilation has been used in patients with COVID-19 with the premise that helmet interface is more effective than mask interface in delivering prolonged treatments with high positive airway pressure, but data about its effectiveness are limited. Objective: To evaluate whether helmet noninvasive ventilation compared with usual respiratory support reduces mortality in patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. Design, Setting, and Participants: This was a multicenter, pragmatic, randomized clinical trial that was conducted in 8 sites in Saudi Arabia and Kuwait between February 8, 2021, and November 16, 2021. Adult patients with acute hypoxemic respiratory failure (n = 320) due to suspected or confirmed COVID-19 were included. The final follow-up date for the primary outcome was December 14, 2021. Interventions: Patients were randomized to receive helmet noninvasive ventilation (n = 159) or usual respiratory support (n = 161), which included mask noninvasive ventilation, high-flow nasal oxygen, and standard oxygen. Main Outcomes and Measures: The primary outcome was 28-day all-cause mortality. There were 12 prespecified secondary outcomes, including endotracheal intubation, barotrauma, skin pressure injury, and serious adverse events. Results: Among 322 patients who were randomized, 320 were included in the primary analysis, all of whom completed the trial. Median age was 58 years, and 187 were men (58.4%). Within 28 days, 43 of 159 patients (27.0%) died in the helmet noninvasive ventilation group compared with 42 of 161 (26.1%) in the usual respiratory support group (risk difference, 1.0% [95% CI, -8.7% to 10.6%]; relative risk, 1.04 [95% CI, 0.72-1.49]; P = .85). Within 28 days, 75 of 159 patients (47.2%) required endotracheal intubation in the helmet noninvasive ventilation group compared with 81 of 161 (50.3%) in the usual respiratory support group (risk difference, -3.1% [95% CI, -14.1% to 7.8%]; relative risk, 0.94 [95% CI, 0.75-1.17]). There were no significant differences between the 2 groups in any of the prespecified secondary end points. Barotrauma occurred in 30 of 159 patients (18.9%) in the helmet noninvasive ventilation group and 25 of 161 (15.5%) in the usual respiratory support group. Skin pressure injury occurred in 5 of 159 patients (3.1%) in the helmet noninvasive ventilation group and 10 of 161 (6.2%) in the usual respiratory support group. There were 2 serious adverse events in the helmet noninvasive ventilation group and 1 in the usual respiratory support group. Conclusions and Relevance: Results of this study suggest that helmet noninvasive ventilation did not significantly reduce 28-day mortality compared with usual respiratory support among patients with acute hypoxemic respiratory failure due to COVID-19 pneumonia. However, interpretation of the findings is limited by imprecision in the effect estimate, which does not exclude potentially clinically important benefit or harm. Trial Registration: ClinicalTrials.gov Identifier: NCT04477668.


Subject(s)
COVID-19 , Noninvasive Ventilation , Oxygen Inhalation Therapy , Respiratory Insufficiency , Acute Disease , Barotrauma/etiology , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Female , Humans , Hypoxia/etiology , Hypoxia/mortality , Hypoxia/therapy , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen/administration & dosage , Oxygen/adverse effects , Oxygen Inhalation Therapy/adverse effects , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Respiratory Insufficiency/therapy
4.
Trials ; 23(1): 105, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109898

ABSTRACT

BACKGROUND: Noninvasive respiratory support is frequently needed for patients with acute hypoxemic respiratory failure due to coronavirus disease 19 (COVID-19). Helmet noninvasive ventilation has multiple advantages over other oxygen support modalities but data about effectiveness are limited. METHODS: In this multicenter randomized trial of helmet noninvasive ventilation for COVID-19 patients, 320 adult ICU patients (aged ≥14 years or as per local standards) with suspected or confirmed COVID-19 and acute hypoxemic respiratory failure (ratio of arterial oxygen partial pressure to fraction of inspired oxygen < 200 despite supplemental oxygen with a partial/non-rebreathing mask at a flow rate of 10 L/min or higher) will be randomized to helmet noninvasive ventilation with usual care or usual care alone, which may include mask noninvasive ventilation, high-flow nasal oxygen, or standard oxygen therapy. The primary outcome is death from any cause within 28 days after randomization. The trial has 80% power to detect a 15% absolute risk reduction in 28-day mortality from 40 to 25%. The primary outcome will be compared between the helmet and usual care group in the intention-to-treat using the chi-square test. Results will be reported as relative risk  and 95% confidence interval. The first patient was enrolled on February 8, 2021. As of August 1, 2021, 252 patients have been enrolled from 7 centers in Saudi Arabia and Kuwait. DISCUSSION: We developed a detailed statistical analysis plan to guide the analysis of the Helmet-COVID trial, which is expected to conclude enrollment in November 2021. TRIAL REGISTRATION: ClinicalTrials.gov NCT04477668 . Registered on July 20, 2020.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Adult , Head Protective Devices , Humans , Noninvasive Ventilation/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/therapy , SARS-CoV-2
5.
BMJ Open ; 11(8): e052169, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446500

ABSTRACT

INTRODUCTION: Non-invasive ventilation (NIV) delivered by helmet has been used for respiratory support of patients with acute hypoxaemic respiratory failure due to COVID-19 pneumonia. The aim of this study was to compare helmet NIV with usual care versus usual care alone to reduce mortality. METHODS AND ANALYSIS: This is a multicentre, pragmatic, parallel randomised controlled trial that compares helmet NIV with usual care to usual care alone in a 1:1 ratio. A total of 320 patients will be enrolled in this study. The primary outcome is 28-day all-cause mortality. The primary outcome will be compared between the two study groups in the intention-to-treat and per-protocol cohorts. An interim analysis will be conducted for both safety and effectiveness. ETHICS AND DISSEMINATION: Approvals are obtained from the institutional review boards of each participating institution. Our findings will be published in peer-reviewed journals and presented at relevant conferences and meetings. TRIAL REGISTRATION NUMBER: NCT04477668.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Head Protective Devices , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiratory Insufficiency/therapy , SARS-CoV-2
6.
Intensive Care Med ; 46(1): 1-16, 2020 01.
Article in English | MEDLINE | ID: mdl-31588983

ABSTRACT

PURPOSE: Acute liver failure (ALF) and acute on chronic liver failure (ACLF) are associated with significant mortality and morbidity. Extracorporeal liver support (ECLS) devices have been used as a bridge to liver transplant; however, the efficacy and safety of ECLS are unclear. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to examine the efficacy and safety of ECLS in liver failure. METHODS: We searched MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials from inception through March 13, 2019. RCTs comparing ECLS to usual care in ALF or ACLF were included. We used the Grading of Recommendations Assessment, Development and Evaluation approach to assess the certainty of the evidence. RESULTS: We identified 25 RCTs (1796 patients). ECLS use was associated with reduction in mortality (RR 0.84; 95% CI 0.74, 0.96, moderate certainty) and improvement in hepatic encephalopathy (HE) (RR 0.71; 95% CI 0.60, 0.84, low certainty) in patients with ALF or ACLF. The effect of ECLS on hypotension (RR 1.46; 95% CI 0.98, 2.2, low certainty), bleeding (RR 1.21; 95% CI 0.88, 1.66, moderate certainty), thrombocytopenia (RR 1.62; 95% CI 1.0, 2.64, very low certainty) and line infection (RR 1.92; 95% CI 0.11, 33.44, low certainty) was uncertain. CONCLUSIONS: ECLS may reduce mortality and improve HE in patients with ALF and ACLF. The effect on other outcomes is uncertain. However, the evidence is limited by risk of bias and imprecision, and larger trials are needed to better determine the effect of ECLS on patient-important outcomes.


Subject(s)
Extracorporeal Circulation/methods , Liver Failure/therapy , Extracorporeal Circulation/instrumentation , Extracorporeal Circulation/trends , Humans , Liver Failure/physiopathology , Randomized Controlled Trials as Topic/standards , Randomized Controlled Trials as Topic/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...