Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Addict Biol ; 29(2): e13366, 2024 02.
Article in English | MEDLINE | ID: mdl-38380710

ABSTRACT

Adolescent alcohol use is a strong predictor for the subsequent development of alcohol use disorders later in life. Additionally, adolescence is a critical period for the onset of affective disorders, which can contribute to problematic drinking behaviours and relapse, particularly in females. Previous studies from our laboratory have shown that exposure to adolescent intermittent ethanol (AIE) vapour alters glutamatergic transmission in the bed nucleus of the stria terminalis (BNST) and, when combined with adult stress, elicits sex-specific changes in glutamatergic plasticity and negative affect-like behaviours in mice. Building on these findings, the current work investigated whether BNST stimulation could substitute for stress exposure to increase the latency to consume a palatable food in a novel context (hyponeophagia) and promote social avoidance in adult mice with AIE history. Given the dense connections between the BNST and the parabrachial nucleus (PBN), a region involved in mediating threat assessment and feeding behaviours, we hypothesized that increased negative affect-like behaviours would be associated with PBN activation. Our results revealed that the chemogenetic stimulation of the dorsolateral BNST induced hyponeophagia in females with AIE history, but not in female controls or males of either group. Social interaction remained unaffected in both sexes. Notably, this behavioural phenotype was associated with higher activation of calcitonin gene-related peptide and dynorphin cells in the PBN. These findings provide new insights into the neurobiological mechanisms underlying the development of negative affect in females and highlight the potential involvement of the BNST-PBN circuitry in regulating emotional responses to alcohol-related stimuli.


Subject(s)
Alcoholism , Parabrachial Nucleus , Septal Nuclei , Male , Mice , Female , Animals , Ethanol/pharmacology
2.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 48-57, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206283

ABSTRACT

BACKGROUND: Adolescent alcohol use can produce long-lasting alterations in brain function, potentially leading to adverse health outcomes in adulthood. Emerging evidence suggests that chronic alcohol use can increase pain sensitivity or exacerbate existing pain conditions, but the potential neural mechanisms underlying these effects require further investigation. Here, we evaluate the impact of chronic ethanol vapor on mechanical sensitivity over the course of acute and protracted withdrawal in adolescent and adult male and female mice, and its potential association with alterations in corticotropin-releasing factor (CRF) signaling within the bed nucleus of the stria terminalis (BNST). METHODS: Adolescent and adult male and female mice underwent intermittent ethanol vapor exposure on 4 days/week for 2 weeks. Mechanical thresholds were evaluated 5 h and 7, 14, 21, and 28 d after cessation of ethanol exposure using the von Frey test. For mice with a history of adolescent ethanol exposure, brains were collected for in situ RNAscope processing after the final test. Messenger RNA expression of c-Fos, Crfr1, and Crf in the BNST subregions was examined. RESULTS: Exposure to intermittent ethanol vapor induced persistent mechanical hypersensitivity during withdrawal in both adolescent and adult mice. Notably, the effect was more transient in mice exposed to ethanol during adulthood, resolving by day 28 after ethanol exposure. Furthermore, both male and female mice with a history of adolescent ethanol exposure exhibited increased activation of CRF receptor type 1 (CRFR1) neurons within the dorsolateral BNST. CONCLUSIONS: Our results support the conclusion that intermittent ethanol exposure can induce mechanical hypersensitivity, potentially through the activation of BNST CRFR1 neurons. These findings provide a basis for future studies aimed at evaluating specific subpopulations of BNST neurons and their contribution to pain in individuals with a history of alcohol use.

3.
J Neurosci ; 43(47): 7902-7912, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37739795

ABSTRACT

Chronic alcohol exposure leads to a neuroinflammatory response involving activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and proinflammatory cytokine production. Acute ethanol (EtOH) exposure activates GABAergic synapses in the central and basolateral amygdala (BLA) ex vivo, but whether this rapid modulation of synaptic inhibition is because of an acute inflammatory response and alters anxiety-like behavior in male and female animals is not known. Here, we tested the hypotheses that acute EtOH facilitates inhibitory synaptic transmission in the BLA by activating the NLRP3 inflammasome-dependent acute inflammatory response, that the alcohol-induced increase in inhibition is cell type and sex dependent, and that acute EtOH in the BLA reduces anxiety-like behavior. Acute EtOH application at a binge-like concentration (22-44 mm) stimulated synaptic GABA release from putative parvalbumin (PV) interneurons onto BLA principal neurons in ex vivo brain slices from male, but not female, rats. The EtOH facilitation of synaptic inhibition was blocked by antagonists of the Toll-like receptor 4 (TLR4), the NLRP3 inflammasome, and interleukin-1 receptors, suggesting it was mediated by a rapid local neuroinflammatory response in the BLA. In vivo, bilateral injection of EtOH directly into the BLA produced an acute concentration-dependent reduction in anxiety-like behavior in male but not female rats. These findings demonstrate that acute EtOH in the BLA regulates anxiety-like behavior in a sex-dependent manner and suggest that this effect is associated with presynaptic facilitation of parvalbumin-expressing interneuron inputs to BLA principal neurons via a local NLRP3 inflammasome-dependent neuroimmune response.SIGNIFICANCE STATEMENT Chronic alcohol exposure produces a neuroinflammatory response, which contributes to alcohol-associated pathologies. Acute alcohol administration increases inhibitory synaptic signaling in the brain, but the mechanism for the rapid alcohol facilitation of inhibitory circuits is unknown. We found that acute ethanol at binge-like concentrations in the basolateral amygdala (BLA) facilitates GABA release from parvalbumin-expressing (PV) interneuron synapses onto principal neurons in ex vivo brain slices from male rats and that intra-BLA ethanol reduces anxiety-like behavior in vivo in male rats, but not female rats. The ethanol (EtOH) facilitation of inhibition in the BLA is mediated by Toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and proinflammatory IL-1ß signaling, which suggests a rapid NLRP3 inflammasome-dependent neuroimmune cascade that plays a critical role in acute alcohol intoxication.


Subject(s)
Anxiety , Basolateral Nuclear Complex , Ethanol , Animals , Female , Male , Rats , Anxiety/chemically induced , Anxiety/metabolism , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Ethanol/toxicity , gamma-Aminobutyric Acid/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotides/metabolism , Nucleotides/pharmacology , Parvalbumins/metabolism , Toll-Like Receptor 4/metabolism
4.
Genes Brain Behav ; 22(2): e12840, 2023 04.
Article in English | MEDLINE | ID: mdl-36807494

ABSTRACT

Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.


Subject(s)
Hippocampus , Stress Disorders, Post-Traumatic , Rats , Animals , Reactive Oxygen Species/pharmacology , Hippocampus/metabolism , CA3 Region, Hippocampal/metabolism , Avoidance Learning/physiology , Dentate Gyrus/metabolism
5.
Adv Physiol Educ ; 45(4): 720-729, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34498936

ABSTRACT

The current heightened social awareness and anxiety triggered by escalating violence against Black Americans in the United States demands a safe space for reflection, education, and civil discourse within the academic setting. Too often there is an unmet need paired with a collective urgent desire to better understand the chronic existing structural, social, educational, and health inequities affecting disadvantaged populations, particularly Black Americans. In this perspective, the authors provide insight into a shared learning approach that provided a forum to discuss Perspectives Against Racism (PAR). Unlike existing top-down approaches, faculty, trainees, and staff were engaged in leading a series of focused discussions to examine unconscious bias, promote awareness of implicit biases, and reflect on individual and collective roles and responsibilities in working toward becoming antiracist. An existing 1-h graduate elective seminar course was dedicated to creating a space for learning, discussion, and exchange of ideas related to the experience and existence of racism (personal and institutional/systemic). A goal of each session was to go beyond didactics and identify mechanisms to implement change, at the level of the individual, department, and institution. This perspective of the shared experience may provide an adaptable framework that can be implemented in an academic setting at the departmental, center, or institutional level.


Subject(s)
Racism , Black or African American , Faculty , Humans , Socialization , United States
6.
Neurobiol Stress ; 15: 100387, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34522703

ABSTRACT

Understanding sex differences in behavioral and molecular effects of stress has important implications for understanding the vulnerability to chronic psychiatric disorders associated with stress response circuitry. The amygdala is critical for emotional learning and generating behavioral responses to stressful stimuli, and preclinical studies indicate that amygdalar endocannabinoid (eCB) signaling regulates emotional states. This study measured eCB contents in the basolateral (BLA) and central (CeA) amygdala of male and female rats exposed to predator odor stress (bobcat urine) and tested for contextual avoidance 24 h later. Stressed females had lower levels of 2-arachidonoyl glycerol (2-AG) in the BLA and higher levels of anandamide (AEA) in the CeA, while exposure to bobcat urine did not affect amygdalar eCB contents in males. We previously reported that female rats exposed to bobcat urine exhibit blunted acoustic startle reactivity (ASR) 48 h after predator odor stress. Therefore, we tested the hypothesis that intra-BLA injection of a diacylglycerol lipase (DAGL) inhibitor (which would be expected to reduce 2-AG levels in BLA) and intra-CeA injection of a fatty acid amide hydrolase (FAAH) inhibitor (which would be expected to increase AEA levels in CeA) would mimic previously observed predator odor stress-induced reductions in ASR. Contrary to our hypothesis, microinjections of either the DAGL inhibitor DO34 into the BLA or the FAAH inhibitor URB597 into the CeA significantly increased ASR in females compared to vehicle-treated rats. These findings describe sex-specific effects of predator odor stress on amygdalar eCBs, and new roles for amygdalar eCBs in regulating behavior in females.

7.
Rev Neurosci ; 32(7): 707-722, 2021 11 25.
Article in English | MEDLINE | ID: mdl-33656307

ABSTRACT

Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.


Subject(s)
Endocannabinoids , Psychotic Disorders , Amygdala , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System
8.
Sci Rep ; 10(1): 19985, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33204022

ABSTRACT

The peripartum period is accompanied by numerous physiological and behavioural adaptations organised by the maternal brain. These changes are essential for adequate expression of maternal behaviour, thereby ensuring proper development of the offspring. The corticotropin-releasing factor (CRF) plays a key role in a variety of behaviours accompanying stress, anxiety, and depression. There is also evidence that CRF contributes to maladaptations during the peripartum period. We investigated the effects of CRF in the bed nucleus of the stria terminalis (BNST) of lactating mice during maternal care and analysed locomotor activity and anxiety-like behaviour in the offspring. The BNST has been implicated in anxiety behaviour and regulation of the stress response. The effects of intra-BNST CRF administration were compared with those induced by the limited bedding (LB) procedure, a model that produces altered maternal behaviour. BALB/cJ dams were exposed to five infusions of CRF or saline into the BNST in the first weeks after birth while the LB dams were exposed to limited nesting material from postnatal days (P) 2-9. Maternal behaviour was recorded in intercalated days, from P1-9. Offspring anxiety-like behaviour was assessed during adulthood using the open-field, elevated plus-maze, and light/dark tests. Both intra-BNST CRF and LB exposure produced altered maternal care, represented by decreased arched-back nursing and increased frequency of exits from the nest. These changes in maternal care resulted in robust sex-based differences in the offspring's behavioural responses during adulthood. Females raised by CRF-infused dams exhibited increased anxiety-like behaviour, whereas males presented a significant decrease in anxiety. On the other hand, both males and females raised by dams exposed to LB showed higher locomotor activity. Our study demonstrates that maternal care is impaired by intra-BNST CRF administrations, and these maladaptations are similar to exposure to adverse early environments. These procedures, however, produce distinct phenotypes in mice during young adulthood and suggest sex-based differences in the susceptibility to poor maternal care.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Lactation/metabolism , Maternal Behavior/physiology , Septal Nuclei/metabolism , Animals , Anxiety/metabolism , Anxiety Disorders/metabolism , Female , Male , Mice , Mice, Inbred BALB C , Phenotype , Receptors, Corticotropin-Releasing Hormone/metabolism , Sex Characteristics
9.
Biol Sex Differ ; 11(1): 27, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32393336

ABSTRACT

BACKGROUND: Alcohol misuse and post-traumatic stress disorder (PTSD) are highly comorbid, and treatment outcomes are worse in individuals with both conditions. Although more men report experiencing traumatic events than women, the lifetime prevalence of PTSD is twice as high in females. Despite these data trends in humans, preclinical studies of traumatic stress reactivity have been performed almost exclusively in male animals. METHODS: This study was designed to examine sex differences in traumatic stress reactivity in alcohol-naive rats (experiment 1) and rats given intermittent access to 20% ethanol in a 2-bottle choice paradigm for 5 weeks (experiment 2). Animals were exposed to predator odor (bobcat urine) and tested for contextual avoidance 24 h later; unstressed controls were never exposed to predator odor. We evaluated changes in physiological arousal using the acoustic startle response (ASR) test at day 2 post-stress and anxiety-like behavior measured in the elevated plus-maze (EPM) at day 17 post-stress. In experiment 3, time course of corticosterone response was examined in male and female rats following exposure to predator odor stress. RESULTS: Alcohol-naive males and females exposed to predator odor displayed blunted weight gain 24 h post-stress, but only a subset of stressed animals exhibited avoidance behavior. In alcohol-drinking animals, the proportion of avoiders was higher in males than females, and predator odor exposure increased ASR in males only. Stressed females exhibited blunted ASR relative to unstressed females and stressed males, regardless of alcohol drinking history. Alcohol-experienced females presented lower anxiety-like behavior and higher general activity in the EPM in comparison with alcohol-experienced males. Plasma corticosterone levels were higher in females immediately after predator odor exposure until 60 min post-stress relative to males. CONCLUSIONS: We report robust sex differences in behavioral and endocrine responses to bobcat urine exposure in adult Wistar rats. Also, males with a history of chronic moderate alcohol drinking exhibited increased traumatic stress reactivity relative to alcohol-drinking females. Our findings emphasize the importance of considering sex as a biological variable in the investigation of traumatic stress effects on physiology and behavior.


Subject(s)
Sex Characteristics , Stress, Psychological , Alcohol Drinking/blood , Alcohol Drinking/psychology , Animals , Anxiety , Corticosterone/blood , Female , Male , Odorants , Rats, Wistar , Reflex, Startle , Stress, Psychological/blood , Stress, Psychological/psychology
10.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 105-114, 2019 04.
Article in English | MEDLINE | ID: mdl-30640179

ABSTRACT

Individuals with post-traumatic stress disorder avoid trauma-related stimuli and exhibit blunted hypothalamic-pituitary-adrenal axis response at the time of trauma. Our laboratory uses predator odor (i.e. bobcat urine) stress to divide adult Wistar rats into groups that exhibit high (avoiders) or low (nonavoiders) avoidance of a predator odor-paired context, modeling the fact that not all humans exposed to traumatic events develop psychiatric conditions. Male avoiders exhibit lower body weight gain after stress, as well as extinction-resistant avoidance that persists after a second stress exposure. These animals also show attenuated hypothalamic-pituitary-adrenal axis response to predator odor that predicts subsequent avoidance of the odor-paired context. Avoiders exhibit unique brain activation profiles relative to nonavoiders and controls (as measured by Fos immunoreactivity), and higher corticotropin-releasing factor levels in multiple brain regions. Furthermore, avoider rats exhibit escalated and compulsive-like alcohol self-administration after traumatic stress. Here, we review the predator odor avoidance model of post-traumatic stress disorder and its utility for tracking behavior and measuring biological outcomes predicted by avoidance. The major strengths of this model are (i) etiological validity with exposure to a single intense stressor, (ii) established approach distinguishing individual differences in stress reactivity, and (iii) robust behavioral and biological phenotypes during and after trauma.


Subject(s)
Avoidance Learning/physiology , Stress Disorders, Post-Traumatic/physiopathology , Animals , Brain/metabolism , Conditioning, Operant/physiology , Disease Models, Animal , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Odorants , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar , Stress Disorders, Post-Traumatic/metabolism , Stress, Psychological/psychology
11.
Behav Brain Res ; 357-358: 104-110, 2019 01 14.
Article in English | MEDLINE | ID: mdl-29330004

ABSTRACT

Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF6-33) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress.


Subject(s)
Corticotropin-Releasing Hormone/therapeutic use , Hormone Antagonists/therapeutic use , Septal Nuclei/drug effects , Social Behavior Disorders/drug therapy , Social Behavior Disorders/etiology , Stress, Psychological/complications , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Peptide Fragments/therapeutic use , Rats , Rats, Wistar , Septal Nuclei/metabolism
12.
Psychoneuroendocrinology ; 99: 8-19, 2019 01.
Article in English | MEDLINE | ID: mdl-30172072

ABSTRACT

While increasing evidence posits poor decision-making as a central feature of mental disorders, very few studies investigated the effects of early-life stress (ELS) on specific components of reward-related choice behaviors. Risk-taking (RT) involves the exposure to some danger, or negative consequences, in order to achieve a goal-directed behavior. Such behaviors are likely to be preceded by risk-assessment (RA), which is a dynamic cognitive process involving the acquisition of information in potentially dangerous situations. Here, we investigated the effects of being raised in impoverished housing conditions during early life (P2-P9) on RT, RA and dopaminergic and corticotrophinergic gene expression of adolescent male and female mice. Phenotypes were assessed by two protocols: the elevated plus-maze (EPM) and the predator-odor risk-taking (PORT). We found decreased RA in mice exposed to impoverished housing in the absence of a reward (EPM), with a more pronounced effect among females. Moreover, when exposed to a predatory olfactory cue, increased RT was observed in these females in a reward-related task (PORT), as well as decreased HPA axis responsivity. This sex-specific behavioral effect was associated with increased Crfr1 mRNA expression in the medial prefrontal cortex (mPFC) and higher levels of the histone mark H3R2me2s, a histone modification known to be involved in transcriptional activation, within the promoter of the Crfr1 gene. These findings revealed that ELS exposure can impair the acquisition of environmental information in dangerous situations and increase RT in reward-related scenarios among females, with an important role regarding epigenetic regulation of the Crfr1 gene.


Subject(s)
Choice Behavior/physiology , Decision Making/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Age Factors , Animals , Brain , Dopamine/metabolism , Epigenesis, Genetic/genetics , Female , Gene Expression Regulation/genetics , Histones/genetics , Housing, Animal , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Mice, Inbred C57BL , Pituitary-Adrenal System/metabolism , Prefrontal Cortex/metabolism , Receptors, Corticotropin-Releasing Hormone/physiology , Reward , Risk Assessment , Risk-Taking , Sex Factors , Stress, Psychological/metabolism
13.
Psychopharmacology (Berl) ; 235(6): 1807-1820, 2018 06.
Article in English | MEDLINE | ID: mdl-29696309

ABSTRACT

RATIONALE: Episodic bouts of social stress can precede the initiation, escalation, or relapse to disordered alcohol intake. Social stress may engender neuroadaptations in the hypothalamic-pituitary-adrenal (HPA) axis and in extrahypothalamic stress circuitry to promote the escalation of alcohol intake. OBJECTIVES: We aimed to (1) confirm a pattern of escalated drinking in socially defeated mice and to (2) test drugs that target distinct aspects of the HPA axis and extrahypothalamic neural substrates for their effectiveness in reducing murine, stress-escalated drinking. METHODS: Male C57BL/6J (B6) mice were socially defeated by resident Swiss-derived males for ten consecutive days receiving 30 bites/day. Ten days after the final defeat, cohorts of B6 mice received continuous or intermittent access to 20% EtOH (w/v) and water. After 4 weeks of drinking, mice were injected with weekly, systemic doses of the CRF-R1 antagonist, CP376395; the glucocorticoid receptor antagonist, mifepristone; the 11-beta-hydroxylase inhibitor, metyrapone; or the 5-alpha-reductase inhibitor, finasteride. RESULTS: Prior to drug treatments, defeated mice reliably consumed more EtOH than non-defeated controls, and mice given alcohol intermittently consumed more EtOH than those with continuous access. CP376395 (17-30 mg/kg) reduced continuous, but not intermittent EtOH intake (g/kg) in socially defeated mice. Mifepristone (100 mg/kg), however, increased drinking by defeated mice with intermittent access to alcohol while reducing drinking during continuous access. When administered finasteride (100 mg/kg) or metyrapone (50 mg/kg), all mice reduced their EtOH intake while increasing their water consumption. CONCLUSIONS: Mice with a history of episodic social defeat stress were selectively sensitive to the effects of CRF-R1 antagonism, suggesting that CRF-R1 may be a potential target for treating alcohol use disorders in individuals who escalate their drinking after exposure to repeated bouts of psychosocial stress. Future studies will clarify how social defeat stress may alter the expression of extrahypothalamic CRF-R1 and glucocorticoid receptors.


Subject(s)
Alcohol Drinking/drug therapy , Alcohol Drinking/psychology , Aminopyridines/administration & dosage , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Stress, Psychological/drug therapy , Stress, Psychological/psychology , Animals , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Male , Mice , Mice, Inbred C57BL , Random Allocation , Receptors, Corticotropin-Releasing Hormone/physiology , Social Behavior
14.
Front Pharmacol ; 8: 762, 2017.
Article in English | MEDLINE | ID: mdl-29118713

ABSTRACT

Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated use to the development of alcohol dependence. Preclinical studies have shown that dysregulation of the corticotropin releasing factor (CRF) neurotransmission has been implicated in stress-related psychopathologies such as depression and anxiety, and may affect alcohol consumption. The bed nucleus of the stria terminalis (BNST) contains CRF-producing neurons which seem to be sensitive to stress. In this study, adult male C57BL/6 mice previously defeated in resident-intruder confrontations were evaluated in the elevated plus-maze and tail suspension test. Mice were also tested for sweet solution intake before and after social stress. After having had continuous access to ethanol (20% weight/volume) for 4 weeks, control and stressed mice had CRF type 1 (CRFR1) or type 2 (CRFR2) receptor antagonists infused into the BNST and then had access to ethanol for 24 h. In separate cohorts of control and stressed mice, we assessed mRNA levels of BNST CRF, CRFR1 and CRFR2. Stressed mice increased their intake of sweet solution after ten sessions of social defeat and showed reduced activity in the open arms of the elevated plus-maze. When tested for ethanol consumption, stressed mice persistently drank significantly more than controls during the 4 weeks of access. Also, social stress induced higher BNST CRF mRNA levels. The selective blockade of BNST CRFR1 with CP376,395 effectively reduced alcohol drinking in non-stressed mice, whereas the selective CRFR2 antagonist astressin2B produced a dose-dependent increase in ethanol consumption in both non-stressed controls and stressed mice. The 10-day episodic defeat stress used here elicited anxiety- but not depressive-like behaviors, and promoted an increase in ethanol drinking. CRF-CRFR1 signaling in the BNST seems to underlie ethanol intake in non-stressed mice, whereas CRFR2 modulates alcohol consumption in both socially defeated and non-stressed mice with a history of chronic intake.

15.
Front Behav Neurosci ; 11: 207, 2017.
Article in English | MEDLINE | ID: mdl-29114211

ABSTRACT

Hyper activation of the neuroimmune system is strongly related to the development of neuropsychiatric disorders. Psychosocial stress has been postulated to play an important role in triggering anxiety and major depression. In preclinical models, there is mounting evidence that social defeat stress activates microglial cells in the central nervous system. This type of stress could be one of the major factors in the development of these psychopathologies. Here, we reviewed the most recent literature on social defeat and the associated immunological reactions. We focused our attention on microglial cells and kept the effect of social defeat over microglia separate from the effect of this stressor on other immune cells and the influence of peripheral immune components in priming central immune reactions. Furthermore, we considered how social defeat stress affects microglial cells and the consequent development of anxiety- and depressive-like states in preclinical studies. We highlighted evidence for the negative impact of the over-activation of the neuroimmune system, especially by the overproduction of pro-inflammatory mediators and cytotoxins. Overproduction of these molecules may cause cellular damage and loss or decreased function of neuronal activity by excessively pruning synaptic connections that ultimately contribute to the development of anxiety- and depressive-like states.

16.
Trends Psychiatry Psychother ; 39(2): 98-105, 2017.
Article in English | MEDLINE | ID: mdl-28614436

ABSTRACT

INTRODUCTION:: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. OBJECTIVES:: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. METHODS:: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. RESULTS:: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. CONCLUSION:: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.


Subject(s)
Aggression/physiology , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Limbic System/metabolism , Prefrontal Cortex/metabolism , Analysis of Variance , Animals , Behavior, Animal/physiology , Enzyme-Linked Immunosorbent Assay , Habituation, Psychophysiologic/physiology , Housing, Animal , Male , Mice
17.
Trends psychiatry psychother. (Impr.) ; 39(2): 98-105, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-904574

ABSTRACT

Abstract Introduction: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. Objectives: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Methods: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Results: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Conclusion: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.


Resumo Introdução: Comportamentos agonísticos ajudam a garantir a sobrevivência, oferecem vantagem na competição e comunicam status social. O paradigma residente-intruso, modelo animal baseado em confrontos intraespecíficos entre machos, pode ser uma ferramenta etológica relevante para investigar a neurobiologia do comportamento agressivo. Objetivos: Analisar os mecanismos comportamentais e neurobiológicos do comportamento agressivo em camundongos Swiss machos expostos a confrontos repetidos no paradigma residente-intruso. Métodos: A análise comportamental foi realizada em associação com medidas de corticosterona plasmática em camundongos expostos repetidamente a um rival em potencial próximo, porém inacessível (instigação social), ou a 10 sessões de instigação social seguidas de encontros agressivos diretos. Além disso, o fator de liberação de corticotrofina (CRF) e o fator neurotrófico derivado do cérebro (BNDF) foram medidos no encéfalo desses animais. Camundongos controles não foram expostos à instigação social ou confrontos agressivos. Resultados: Os camundongos expostos a confrontos agressivos exibiram um padrão semelhante de comportamentos agressivos e não agressivos típicos da espécie na primeira e na última sessão. Em contraste com instigação social apenas, confrontos agressivos repetidos promoveram aumento na corticosterona plasmática. Após 10 sessões de confrontos agressivos, os camundongos apresentaram uma tendência não significativa de redução dos níveis de CRF no hipocampo, que se correlacionaram inversamente com os níveis plasmáticos de corticosterona. Por outro lado, sessões repetidas de instigação social ou confronto agressivo não alteraram as concentrações de BDNF no córtex pré-frontal e hipocampo. Conclusão: A exposição a episódios repetidos de encontros agressivos não promoveu habituação ao longo do tempo. Adicionalmente, o CRF parece estar envolvido nas respostas fisiológicas aos estressores sociais.


Subject(s)
Animals , Male , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Prefrontal Cortex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Aggression/physiology , Limbic System/metabolism , Behavior, Animal/physiology , Enzyme-Linked Immunosorbent Assay , Analysis of Variance , Habituation, Psychophysiologic/physiology , Housing, Animal , Mice
18.
Alcohol Clin Exp Res ; 39(9): 1609-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26247973

ABSTRACT

BACKGROUND: Most studies with corticotropin releasing factor (CRF) and ethanol (EtOH) consumption have focused on CRF type 1 (CRF1 ) receptors; less is known about other components of the CRF system, such as the CRF type 2 (CRF2 ) receptors and the CRF binding protein (CRFBP). In humans, several nucleotide polymorphisms in the CRFBP gene have been associated with EtOH abuse. METHODS: The role of the CRFBP within the ventral tegmental area (VTA) and the central nucleus of the amygdala (CeA) was investigated in C57BL/6J mice exposed to an EtOH binge drinking paradigm (drinking in the dark [DID]), or to a dependence-producing drinking protocol (2-bottle choice, intermittent access to alcohol [IAA]) for 4 weeks. Potential interactions between VTA CRFBP and CRF2 receptors on EtOH binge drinking were also assessed. Mice were microinjected with the CRFBP antagonist CRF fragment 6-33 (CRF6-33 ) into the VTA or CeA, or with the CRF2 antagonist astressin-2B (A2B) alone or in combination with CRF6-33 into the VTA, and had access to 20% (w/v) EtOH for 4 hours (DID). Separate cohorts of mice received vehicle and doses of CRF6-33 into the VTA or CeA and had access to EtOH/water for 24 hours (IAA). Blood EtOH concentrations (BECs) were measured, and signs of withdrawal by handling-induced convulsions were determined. RESULTS: Intra-VTA CRF6-33 and A2B reduced EtOH intake dose dependently in mice during DID. Furthermore, a combination of a subeffective dose of CRF6-33 and a lower dose of A2B promoted additive effects in attenuating EtOH binge drinking. Intra-VTA CRF6-33 did not affect EtOH consumption in mice given IAA, and intra-CeA CRF6-33 did not change alcohol consumption in both models of drinking. DID and IAA promoted pharmacologically relevant BECs; however, only mice given IAA exhibited convulsive events during withdrawal. CONCLUSIONS: These findings suggest that VTA CRFBP is involved in the initial stages of escalated EtOH drinking by mechanisms that may involve CRF2 receptors.


Subject(s)
Binge Drinking/metabolism , Carrier Proteins/metabolism , Ethanol/administration & dosage , Receptors, Corticotropin-Releasing Hormone/metabolism , Ventral Tegmental Area/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Ventral Tegmental Area/drug effects
19.
Psychopharmacology (Berl) ; 232(6): 1003-10, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25216798

ABSTRACT

RATIONALE: Social defeat stress results in escalation of cocaine taking and long-term neural adaptations in rats. How the intensity and timing of social defeat stress determine these effects, particularly in mice, have not been well characterized. OBJECTIVE: This study investigated the effects of mild vs. moderate intensities and durations of social stress on intravenous cocaine self-administration as well as on dopamine (DA) release in the nucleus accumbens shell (NAcSh) by using in vivo microdialysis. METHODS: Adult male Swiss Webster (CFW) mice experienced 10 days of social defeat stress, either mild (15 attack bites in ca. 1.8 min) or moderate (30 attack bites in ca. 3.6 min), and compared to controls that were handled daily. Subsequently, the socially stressed mice were assessed for either (1) intravenous cocaine self-administration, using several unit doses (0, 0.3, 0.6, 1.0 mg/kg/infusion) under limited access conditions, or (2) neural sensitization, as determined by in vivo microdialysis of DA in the NAcSh in response to acute d-amphetamine challenge. RESULTS: Social defeat stress resulted in escalated cocaine self-administration in both mild and moderate socially stressed groups. In addition, social defeat stress led to increased DA release after d-amphetamine challenge. CONCLUSIONS: These data suggest that both mild and moderate socially stressed mice exhibit increased cocaine taking compared to controls, and this increase is associated with escalated dopaminergic responses in the NAcSh.


Subject(s)
Cocaine/administration & dosage , Dominance-Subordination , Dopamine Uptake Inhibitors/administration & dosage , Dopamine/metabolism , Nucleus Accumbens/drug effects , Stress, Psychological/metabolism , Animals , Behavior, Animal/drug effects , Dextroamphetamine/pharmacology , Male , Mice , Microdialysis , Nucleus Accumbens/metabolism , Rats , Self Administration
20.
J Neurosci ; 34(19): 6659-67, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24806691

ABSTRACT

The nature of neuroadaptations in the genesis of escalated cocaine taking remains a topic of considerable interest. Intermittent social defeat stress induces both locomotor and dopaminergic cross-sensitization to cocaine, as well as escalated cocaine self-administration. The current study examines the role of corticotropin releasing factor receptor subtypes 1 and 2 (CRFR1, CRFR2) within the ventral tegmental area (VTA) during social defeat stress. This study investigated whether injecting either a CRFR1 or CRFR2 antagonist directly into the VTA before each social defeat would prevent the development of later (1) locomotor sensitization, (2) dopaminergic sensitization, and (3) escalated cocaine self-administration in rats. CRFR1 antagonist CP376395 (50 or 500 ng/side), CRFR2 antagonist Astressin2-B (100 or 1000 ng/side), or vehicle (aCSF) was microinjected into the VTA 20 min before social defeat stress (or handling) on days 1, 4, 7, and 10. Ten days later, rats were injected with cocaine (10 mg/kg, i.p.) and assessed for either locomotor sensitization, measured by walking activity, or dopaminergic sensitization, measured by extracellular dopamine (DA) in the nucleus accumbens shell (NAcSh) through in vivo microdialysis. Locomotor sensitization testing was followed by intravenous cocaine self-administration. Intra-VTA antagonism of CRFR1, but not CRFR2, inhibited the induction of locomotor cross-sensitization to cocaine, whereas both prevented dopaminergic cross-sensitization and escalated cocaine self-administration during a 24 h "binge." This may suggest dissociation between locomotor sensitization and cocaine taking. These data also suggest that interactions between CRF and VTA DA neurons projecting to the NAcSh are essential for the development of dopaminergic cross-sensitization to cocaine.


Subject(s)
Cocaine-Related Disorders/psychology , Cocaine/pharmacology , Corticotropin-Releasing Hormone/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Dopamine/pharmacology , Social Environment , Stress, Psychological/psychology , Ventral Tegmental Area/drug effects , Aminopyridines/pharmacology , Animals , Behavior, Animal/drug effects , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Male , Microdialysis , Microinjections , Motor Activity/drug effects , Motor Activity/physiology , Peptide Fragments/pharmacology , Rats , Rats, Long-Evans , Receptors, Corticotropin-Releasing Hormone/drug effects , Self Administration , Social Behavior , Substance Abuse, Intravenous
SELECTION OF CITATIONS
SEARCH DETAIL
...