Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 41(1): 262-72, 2012.
Article in English | MEDLINE | ID: mdl-22218194

ABSTRACT

Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Ecosystem , Nitrification , Soil Pollutants/chemistry , Soil/chemistry , Ammonia/chemistry , Ammonia/metabolism , Animals , Cattle , Dairying , Environmental Monitoring , Manure , Nitrogen/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods
2.
J Environ Qual ; 35(4): 1405-12, 2006.
Article in English | MEDLINE | ID: mdl-16825461

ABSTRACT

Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.


Subject(s)
Arachis/growth & development , Carbon Dioxide/metabolism , Carbon/metabolism , Nitrogen/metabolism , Organic Chemicals/metabolism , Paspalum/growth & development , Soil , Agriculture , Atmosphere , Conservation of Natural Resources , Organic Chemicals/chemistry , Temperature , Time Factors
3.
J Environ Qual ; 32(6): 1978-91, 2003.
Article in English | MEDLINE | ID: mdl-14674519

ABSTRACT

Methane (CH4) effluxes by paddy-culture rice (Oryza sativa L.) contribute about 16% of the total anthropogenic emissions. Since radiative forcing of CH4 at current atmospheric concentrations is 21 times greater on a per mole basis than that of carbon dioxide (CO2), it is imperative that the impact of global change on rice CH4 emissions be evaluated. Rice (cv. IR72) was planted in sunlit, closed-circulation, controlled-environment chambers in which CH4 efflux densities were measured daily. The CO2 concentration was maintained at either 330 or 660 micromol mol(-1). Air temperatures were controlled to daily maxima and minima of 32/23, 35/26, and 38/29 degrees C at each CO2 treatment. Emissions of CH4 each day were determined during a 4-h period after venting and resealing the chambers at 0800 h. Diurnal CH4 effluxes on 77, 98, and 119 d after planting (DAP) were obtained similarly at 4-h intervals. Emissions over four-plant hills and over flooded bare soil were measured at 53, 63, and 100 DAP. Emissions were negligible before 40 DAP. Thereafter, emissions were observed first in high-CO2, high-temperature treatments and reached a sustained maximum efflux density of about 7 mg m(-2) h(-1) (0.17 g m(-2) d(-1)) near the end of the growing season. Total seasonal CH4 emission was fourfold greater for high-CO2, high-temperature treatments than for the low-CO2, low-temperature treatment, probably due to more root sloughing or exudates, since about sixfold more acetate was found in the soil at 71 DAP. Both rising CO2 and increasing temperatures could lead to a positive feedback on global warming by increasing the emissions of CH4 from rice.


Subject(s)
Air Pollutants/metabolism , Air/analysis , Carbon Dioxide/metabolism , Methane/metabolism , Oryza/metabolism , Atmosphere/analysis , Environment, Controlled , Greenhouse Effect , Hot Temperature , Humans , Temperature
4.
Curr Microbiol ; 46(6): 423-31, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12732949

ABSTRACT

A L-methionine- D, L-sulfoximine-resistant mutant of the cyanobacterium Anabaena variabilis, strain SA1, excreted the ammonium ion generated from N(2) reduction. In order to determine the biochemical basis for the NH(4)(+)-excretion phenotype, glutamine synthetase (GS) was purified from both the parent strain SA0 and from the mutant. GS from strain SA0 (SA0-GS) had a pH optimum of 7.5, while the pH optimum for GS from strain SA1 (SA1-GS) was 6.8. SA1-GS required Mn(+2) for optimum activity, while SA0-GS was Mg(+2) dependent. SA0-GS had the following apparent K(m) values at pH 7.5: glutamate, 1.7 m M; NH(4)(+), 0.015 m M; ATP, 0.13 m M. The apparent K(m) for substrates was significantly higher for SA1-GS at its optimum pH (glutamate, 9.2 m M; NH(4)(+), 12.4 m M; ATP, 0.17 m M). The amino acids alanine, aspartate, cystine, glycine, and serine inhibited SA1-GS less severely than the SA0-GS. The nucleotide sequences of glnA (encoding glutamine synthetase) from strains SA0 and SA1 were identical except for a single nucleotide substitution that resulted in a Y183C mutation in SA1-GS. The kinetic properties of SA1-GS isolated from E. coli or Klebsiella oxytoca glnA mutants carrying the A. variabilis SA1 glnA gene were also similar to SA1-GS isolated from A. variabilis strain SA1. These results show that the NH(4)(+)-excretion phenotype of A. variabilis strain SA1 is a direct consequence of structural changes in SA1-GS induced by the Y183C mutation, which elevated the K(m) values for NH(4)(+) and glutamate, and thus limited the assimilation of NH(4)(+) generated by N(2) reduction. These properties and the altered divalent cation-mediated stability of A. variabilis SA1-GS demonstrate the importance of Y183 for NH(4)(+) binding and metal ion coordination.


Subject(s)
Anabaena/metabolism , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Nitrogenase/metabolism , Quaternary Ammonium Compounds/metabolism , Amino Acid Sequence , Amino Acid Substitution , Anabaena/enzymology , Anabaena/genetics , Base Sequence , Cysteine/genetics , Cysteine/metabolism , Kinetics , Magnesium/metabolism , Manganese/metabolism , Molecular Sequence Data , Point Mutation , Sequence Alignment , Tyrosine/genetics , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...