Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(11): 6592-6602, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-35495995

ABSTRACT

Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance.

2.
J Colloid Interface Sci ; 491: 246-254, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28039806

ABSTRACT

Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was observed after pyrolytic removal of polymeric template because the stretched poly(4-vinyl pyridine) chains interpenetrating with silica shell acted as an effective porogen. The embedding of Au@hollow-SiO2 particles in porous silica support prevented their fusion during pyrolysis. The catalytic activity of Au@hollow-SiO2@PSS was investigated using a model reaction of catalytic reduction of 4-nitrophenol and reductive degradation of Congo red azo-dye. Significantly, to the best of our knowledge, Au@hollow-SiO2@PSS catalyst shows the highest activity among analogous systems reported till now in literature. Such high activity was attributed to the presence of multiple pores within silica shell of Au@hollow-SiO2 particles and easy accessibility of reagents to the catalytically active sites of the ligand-free gold surface through the porous silica support.

3.
ACS Nano ; 9(6): 6147-57, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26014100

ABSTRACT

This study reports on a facile approach to the fabrication of nanoporous carbon cathodes for lithium sulfur batteries using gyroid carbon replicas based on use of polystyrene-poly-4-vinylpyridine (PS-P4VP) block copolymers as sacrificial templates. The free-standing gyroid carbon network with a highly ordered and interconnected porous structure has been fabricated by impregnating the carbon precursor solution into the gyroid block copolymer nanotemplates and subsequently carbonizing them. A wide range of analytical tools have been employed to characterize fabricated porous carbon material. Prepared nanostructures are envisioned to have a great potential in myriad areas such as energy storage/conversion devices owing to their fascinating morphology exhibiting high surface area and uniform porosity with interconnected three-dimensional networks. The resulting carbon nanoporous structures infused with elemental sulfur have been found to work as a promising electrode for lithium sulfur batteries demonstrating a high cycling stability over more than 200 cycles.

4.
Acta Biomater ; 7(10): 3563-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21745610

ABSTRACT

Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for bone defects resulting from malignant bone tumors. The development of bioactive materials with magnetic and drug delivery properties may potentially meet this target. The aim of this study was to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermic and local drug delivery applications. To this end iron (Fe)-containing MBG (Fe-MBG) scaffolds with a hierarchical large pores structure (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been prepared. The effects of Fe on the mesopore structure and physiochemical, magnetic, drug delivery and biological properties of MBG scaffolds have been systematically investigated. The results show that the morphology of the mesopores varied from straight channels to curved fingerprint-like channels after incorporation of Fe into MBG scaffolds. The magnetism of MBG scaffolds can be tailored by controlling the Fe content. Furthermore, the incorporation of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and the expression of bone-related genes (ALP and OCN) in human bone marrow mesenchymal stem cells (BMSC) attached to the scaffolds. The Fe-MBG scaffolds obtained also possessed high specific surface areas and demonstrated sustained drug delivery. Thus Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunctionality of Fe-MBG scaffolds suggests that there is great potential for their use in the treatment and regeneration of large-bone defects caused by malignant bone tumors through a combination of hyperthermia, local drug delivery and osteoconductivity.


Subject(s)
Biocompatible Materials/pharmacology , Glass/chemistry , Magnetics , Tissue Scaffolds/chemistry , Aged , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Cells/ultrastructure , Bone and Bones/drug effects , Bone and Bones/metabolism , Cell Adhesion/drug effects , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Humans , Ions , Iron/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure , Minerals/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Porosity/drug effects , X-Ray Diffraction
5.
Langmuir ; 24(21): 12603-11, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-18828614

ABSTRACT

The surface properties of poly(dimethyl siloxane) (PDMS) layers screen printed onto silicon wafers were studied after oxygen and ammonia plasma treatments and subsequent grafting of poly(ethylene -alt-maleic anhydride) (PEMA) using X-ray photoelectron spectroscopy (XPS), roughness analysis, and contact angle and electrokinetic measurements. In the case of oxygen-plasma-treated PDMS, a hydrophilic, brittle, silica-like surface layer containing reactive silanol groups was obtained. These surfaces indicate a strong tendency for "hydrophobic recovery" due to the surface segregation of low-molecular-weight PDMS species. The ammonia plasma treatment of PDMS resulted in the generation of amino-functional surface groups and the formation of a weak boundary layer that could be washed off by polar liquids. To avoid the loss of the plasma modification effect and to achieve stabilization of the mechanically instable, functionalized PDMS top layer, PEMA was subsequently grafted directly or after using gamma-APS as a coupling agent on the plasma-activated PDMS surfaces. In this way, long-time stable surface functionalization of PDMS was obtained. The reactivity of the PEMA-coated PDMS surface caused by the availability of anhydride groups could be controlled by the number of amino functional surface groups of the PDMS surface necessary for the covalent binding of PEMA. The higher the number of amino functional surface groups available for the grafting-to procedure, the lower the hydrophilicity and hence the lower the reactivity of the PEMA-coated PDMS surface. Additionally, pull-off tests were applied to estimate the effect of surface modification on the adhesion between the silicone rubber and an epoxy resin.

SELECTION OF CITATIONS
SEARCH DETAIL
...