Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Evol Appl ; 17(5): e13704, 2024 May.
Article in English | MEDLINE | ID: mdl-38770102

ABSTRACT

Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.

2.
Sci Total Environ ; 867: 161399, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36638980

ABSTRACT

Environmental impact assessments of trace metals and radionuclides in estuarine waters will benefit from numerical transport models that can provide detailed and accurate predictions of concentrations of harmful physico-chemical forms of contaminants at adequate spatial and temporal resolution. Aiming to study the potential of aluminium (Al) exposure to biota, a transport model (OpenDrift) including dynamic speciation and transformation processes was improved and applied, using three-dimensional hydrodynamic flow fields from a numerical ocean model (ROMS) at high horizontal resolution (32 m). Al transport and concentration was computed along the Sandnesfjorden Fjord, south-eastern Norway, from river outlet to open coastal waters. Validation of the circulation model with 29 hydrographic profiles from Sandnesfjorden showed substantial improvements compared to previous studies due to optimized model configuration (salinity overestimation decreased from >7 psu to <4 psu). Modeled Al data compared well with observed surface Al concentration from 12 locations and the along-fjord decreasing trend in Al-concentration was well reproduced (error ratios were <2 in Sandnesfjorden). Except in the channel area, both salinity and Al concentration estimates lie well within the expected variability. However, the transport modeling gave a more detailed site-specific picture of the Al concentration, suggesting more scattered and variable fields than indicated by observational data (variations of a factor 3-4 over short spatiotemporal scales). Reversed flow events (surface flow into the fjord) caused considerable mixing and redistribution of water masses, affecting both horizontal mixing of river discharges with coastal water as well as vertically as surface water mixed with deeper water masses. These blocking events strongly changed properties and distribution of the water masses giving rise to local and short-term high Al-exposure episodes (variations of a factor of 10 over a 12 h period) in the fjord that may pose risks to biota and therefore should be taken into account in impact and risk assessments.

3.
Sci Rep ; 12(1): 3016, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301340

ABSTRACT

High concentrations of microplastic particles are reported across the Arctic Ocean-yet no meaningful point sources, suspension timelines, or accumulation areas have been identified. Here we use Lagrangian particle advection simulations to model the transport of buoyant microplastic from northern European rivers to the high Arctic, and compare model results to the flux of sampled synthetic particles across the main entrance to the Arctic Ocean. We report widespread dispersal along the Eurasian continental shelf, across the North Pole, and back into the Nordic Seas; with accumulation zones over the Nansen basin, the Laptev Sea, and the ocean gyres of the Nordic Seas. The equal distribution of sampled synthetic particles across water masses covering a wide time frame of anthropogenic influence suggests a system in full saturation rather than pronounced injection from European sources, through a complex circulation scheme connecting the entire Arctic Mediterranean. This circulation of microplastic through Arctic ecosystems may have large consequences to natural ecosystem health, highlighting an ever-increasing need for better waste management.


Subject(s)
Microplastics , Plastics , Arctic Regions , Ecosystem , Oceans and Seas , Rivers
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165196

ABSTRACT

Life on Earth has been characterized by recurring cycles of ecological stasis and disruption, relating biological eras to geological and climatic transitions through the history of our planet. Due to the increasing degree of ecological abruption caused by human influences many advocate that we now have entered the geological era of the Anthropocene, or "the age of man." Considering the ongoing mass extinction and ecosystem reshuffling observed worldwide, a better understanding of the drivers of ecological stasis will be a requisite for identifying routes of intervention and mitigation. Ecosystem stability may rely on one or a few keystone species, and the loss of such species could potentially have detrimental effects. The Atlantic cod (Gadus morhua) has historically been highly abundant and is considered a keystone species in ecosystems of the northern Atlantic Ocean. Collapses of cod stocks have been observed on both sides of the Atlantic and reported to have detrimental effects that include vast ecosystem reshuffling. By whole-genome resequencing we demonstrate that stabilizing selection maintains three extensive "supergenes" in Atlantic cod, linking these genes to species persistence and ecological stasis. Genomic inference of historic effective population sizes shows continued declines for cod in the North Sea-Skagerrak-Kattegat system through the past millennia, consistent with an early onset of the marine Anthropocene through industrialization and commercialization of fisheries throughout the medieval period.


Subject(s)
Aquaculture/methods , Conservation of Natural Resources/methods , Gadus morhua/genetics , Animals , Atlantic Ocean , Ecosystem , Fisheries , Gadus morhua/growth & development , Genome , Genomics , Humans , North Sea , Population Dynamics
5.
J Fish Biol ; 100(3): 660-674, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34931705

ABSTRACT

Using national and international research survey data and applying a combination of models and mapping tools, this study revealed temperature and depth as the crucial environmental drivers of both the distribution and the abundance of four benthopelagic chondrichthyans inhabiting Norwegian and Icelandic waters: rabbitfish (Chimaera monstrosa), velvet-belly lanternshark (Etmopterus spinax), blackmouth catshark (Galeus melastomus) and spurdog (Squalus acanthias). C. monstrosa and E. spinax seem to prefer similar spatial and ecological habitats, that is deep and cold waters. In contrast, G. melastomus and S. acanthias both prefer similar ecological habitats, that is warmer and shallower waters; nonetheless, they exhibit a different spatial distribution pattern. The species' varied habitat and spatial preferences may lead to different levels of exposure to fishing activities and associated by-catch risks. Findings of the species' spatial distributions and their driving forces are expected to inform the sustainable management of these species and the ecosystems they inhabit.


Subject(s)
Sharks , Animals , Chimera , Ecosystem , Norway , Temperature
6.
J Fish Biol ; 99(2): 569-580, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33792922

ABSTRACT

Lemon sole Microstomus kitt is a commercially valuable flatfish species that occurs in shelf waters around the northeast Atlantic. Only the most basic life-history information is available for the North Sea. Spawning is generally assumed to occur between early May and October, with a peak between May and August. Lemon sole larvae have been found in the water column in the northern North Sea in winter during standard surveys. Larvae captured in November/December 2016 and January/February 2017 using the International Council for the Exploration of the Seas standard 2 m Midwater Ring trawls (MIK) were analysed to gain a better understanding of the pelagic early life-history stages of lemon sole, especially in relation to the timing of spawning and the dispersal of overwintering larvae. Larval age was estimated from sagittal otolith primary increment counts. The larvae caught in November/December ranged in nominal age from 4 to 45 days post-hatching which suggests that spawning continues into late October and November. Most, but not all, of the larvae caught in January/February were post metamorphosis, and the difference in age between the two sampling dates was consistent with the elapsed time between samplings. The estimated hatching dates confirm that lemon sole spawning extends into late autumn in the northern North Sea, with overwintering larvae in all developmental stages. Drift modelling of eggs and larvae released at historically documented spawning grounds in the northern North Sea suggests that these grounds are also the source for all of the larvae sampled during the 2016-2017 surveys.


Subject(s)
Otolithic Membrane , Animals , Larva , North Sea , Oceans and Seas , Seasons
7.
Oecologia ; 192(1): 213-225, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31828530

ABSTRACT

With the increasing imperative for societies to act to curb climate change by increasing carbon stores and sinks, it has become critical to understand how organic carbon is produced, released, transformed, transported, and sequestered within and across ecosystems. In freshwater and open-ocean systems, shredders play a significant and well-known role in transforming and mobilizing carbon, but their role in the carbon cycle of coastal ecosystems is largely unknown. Marine plants such as kelps produce vast amounts of detritus, which can be captured and consumed by shedders as it traverses the seafloor. We measured capture and consumption rates of kelp detritus by sea urchins across four sampling periods and over a range of kelp detritus production rates and sea urchin densities, in northern Norway. When sea urchin densities exceeded 4 m-2, the sea urchins captured and consumed a high percentage (ca. 80%) of kelp detritus on shallow reefs. We calculated that between 1.3 and 10.8 kg of kelp m-2 are shredded annually from these reefs. We used a hydrodynamic dispersal model to show that transformation of kelp blades to sea urchin feces increased its export distance fourfold. Our findings show that sea urchins can accelerate and extend the export of carbon to neighboring areas. This collector-shredder pathway could represent a significant flow of small particulate carbon from kelp forests to deep-sea areas, where it can subsidize benthic communities or contribute to the global carbon sink.


Subject(s)
Kelp , Animals , Carbon , Ecosystem , Food Chain , Norway , Sea Urchins
8.
Sci Total Environ ; 687: 1147-1163, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31412451

ABSTRACT

Assessments of the impacts of aluminium (Al) to aquatic organisms in estuarine waters have suffered from the lack of available models that can accurately predict the presence of toxic physico-chemical forms (species) of Al at adequate spatial and temporal resolution. In the present work, transport and distribution of river-discharged Al species through changing environmental conditions in the Sandnesfjorden estuary, South-Eastern Norway, was predicted using a numerical model system at relatively high spatial (32 m × 32 m in horizontal) and temporal (1 h) resolution. New model code was implemented, including dynamic, salinity-dependent speciation and transformation processes, based on in situ measurements from several Norwegian estuaries as well as experimental data. This is the first time such elemental speciation code including LMM, colloidal, particle and sediment species is utilized in an estuary case in combination with high resolution hydrodynamics and compared to an extensive observational dataset. Good agreement was obtained between modeled and observed total and fractionated Al concentration at several stations along the fjord transect. Without including background contribution of Al from the coastal water, the model predicted too low Al concentrations (by up to approximately a factor 4) near the fjord mouth. The surface Al concentrations were also underestimated due to overestimated near-surface vertical mixing in the hydrodynamic model. The observed correlation between salinity and total Al concentration was well reproduced by the model in situations with low upper layer volume flux, typical under low river flow conditions. In contrast, the predicted surface salinity and total Al concentration were less correlated under high-flux conditions. As the general trends of Al concentrations and speciation were well reproduced, this study demonstrated that by including carefully chosen transfer rates, the model can be used to predict spatio-temporal distribution of total contamination as well as concentration levels of the elemental species.

9.
Sci Total Environ ; 669: 856-871, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30897442

ABSTRACT

Following a potential nuclear accident, river run-off may potentially become a significant source of radionuclide contamination to the coastal marine environment. In the present work, code for radionuclide speciation and dynamic transfer of radionuclides between the different species was implemented in a Lagrangian marine dispersion model. A case study was performed where the model system utilized ocean circulation fields at relatively high spatial (160 mâ€¯× 160 m in horizontal direction) and temporal resolution (1 hour), considering a hypothetical accident scenario including river discharges of 137Cs to the marine environment. Results from a number of simulations were compared to identify how factors associated with radionuclide speciation and transfer between the model compartments could affect the predicted radiocesium activity concentrations. The results showed that by including dynamic transfer of radionuclides between the model compartments, the total activity concentrations at far-field sites could vary with more than two orders of magnitude, demonstrating that this model configuration enables prediction of potential local hot-spots. However, the total activity concentration near the river outlets was less affected (< factor 10). The radionuclide speciation in the river discharges and the parameterization of 137Cs particle affinity greatly affected the specie distribution (> factor 103 increase in concentration of particle-associated 137Cs) as well as the settling of radionuclides towards the seabed (up to factor 102 increase in 137Cs sediment concentrations). These factors were therefore identified as important contributors to the overall uncertainty.

10.
Glob Chang Biol ; 25(1): 25-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30295388

ABSTRACT

Climate change and increased anthropogenic activities are expected to elevate the potential of introducing nonindigenous species (NIS) into the Arctic. Yet, the knowledge base needed to identify gaps and priorities for NIS research and management is limited. Here, we reviewed primary introduction events to each ecoregion of the marine Arctic realm to identify temporal and spatial patterns, likely source regions of NIS, and the putative introduction pathways. We included 54 introduction events representing 34 unique NIS. The rate of NIS discovery ranged from zero to four species per year between 1960 and 2015. The Iceland Shelf had the greatest number of introduction events (n = 14), followed by the Barents Sea (n = 11), and the Norwegian Sea (n = 11). Sixteen of the 54 introduction records had no known origins. The majority of those with known source regions were attributed to the Northeast Atlantic and the Northwest Pacific, 19 and 14 records, respectively. Some introduction events were attributed to multiple possible pathways. For these introductions, vessels transferred the greatest number of aquatic NIS (39%) to the Arctic, followed by natural spread (30%) and aquaculture activities (25%). Similar trends were found for introductions attributed to a single pathway. The phyla Arthropoda and Ochrophyta had the highest number of recorded introduction events, with 19 and 12 records, respectively. Recommendations including vector management, horizon scanning, early detection, rapid response, and a pan-Arctic biodiversity inventory are considered in this paper. Our study provides a comprehensive record of primary introductions of NIS for marine environments in the circumpolar Arctic and identifies knowledge gaps and opportunities for NIS research and management. Ecosystems worldwide will face dramatic changes in the coming decades due to global change. Our findings contribute to the knowledge base needed to address two aspects of global change-invasive species and climate change.


Subject(s)
Aquatic Organisms/physiology , Climate Change , Introduced Species/trends , Animals , Arctic Regions , Biodiversity , Ecosystem , Introduced Species/statistics & numerical data , Risk
12.
Evol Appl ; 11(9): 1527-1539, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30344625

ABSTRACT

Coexistence in the same habitat of closely related yet genetically different populations is a phenomenon that challenges our understanding of local population structure and adaptation. Identifying the underlying mechanisms for such coexistence can yield new insight into adaptive evolution, diversification and the potential for organisms to adapt and persist in response to a changing environment. Recent studies have documented cryptic, sympatric populations of Atlantic cod (Gadus morhua) in coastal areas. We analysed genetic origin of 6,483 individual cod sampled annually over 14 years from 125 locations along the Norwegian Skagerrak coast and document stable coexistence of two genetically divergent Atlantic cod ecotypes throughout the study area and study period. A "fjord" ecotype dominated in numbers deep inside fjords while a "North Sea" ecotype was the only type found in offshore North Sea. Both ecotypes coexisted in similar proportions throughout coastal habitats at all spatial scales. The size-at-age of the North Sea ecotype on average exceeded that of the fjord ecotype by 20% in length and 80% in weight across all habitats. Different growth and size among individuals of the two types might be one of several ecologically significant variables that allow for stable coexistence of closely related populations within the same habitat. Management plans, biodiversity initiatives and other mitigation strategies that do not account for the mixture of species ecotypes are unlikely to meet objectives related to the sustainability of fish and fisheries.

13.
PLoS One ; 13(7): e0201338, 2018.
Article in English | MEDLINE | ID: mdl-30063759

ABSTRACT

The Norwegian government has decided that the aquaculture industry shall grow, provided that the growth is environmentally sustainable. Sustainability is scored based on the mortality of wild salmonids caused by the parasitic salmon lice. Salmon lice infestation pressure has traditionally been monitored through catching wild sea trout and Arctic char using nets or traps or by trawling after Atlantic salmon postsmolts. However, due to that the Norwegian mainland coastline is nearly 25 000 km, complementary methods that may be used in order to give complete results are needed. We have therefore developed an operational salmon lice model, which calculates the infestation pressure all along the coast in near real-time based on a hydrodynamical ocean model and a salmon lice particle tracking model. The hydrodynamic model generally shows a negative temperature bias and a positive salinity bias compared to observations. The modeled salmon lice dispersion correlates with measured lice on wild salmonids caught using traps or nets. This allows for using two complementary data sources in order to determine the infestation pressure of lice originating from fish farms on wild salmonids, and thereby provide an improved monitoring system for assessing risk and sustainability which forms the basis for knowledge-based advice to management authorities.


Subject(s)
Copepoda , Epidemiological Monitoring , Fish Diseases , Models, Biological , Salmo salar/parasitology , Animals , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fish Diseases/prevention & control , Fish Diseases/transmission , Norway
14.
Prog Oceanogr ; 159: 13-30, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29225381

ABSTRACT

Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

15.
Prev Vet Med ; 129: 48-57, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27317322

ABSTRACT

Salmon lice is one of the major parasitic problems affecting wild and farmed salmonid species. The planktonic larval stages of these marine parasites can survive for extended periods without a host and are transported long distances by water masses. Salmon lice larvae have limited swimming capacity, but can influence their horizontal transport by vertical positioning. Here, we adapted a coupled biological-physical model to calculate the distribution of farm-produced salmon lice (Lepeophtheirus salmonis) during winter in the southwest coast of Norway. We tested 4 model simulations to see which best represented empirical data from two sources: (1) observed lice infection levels reported by farms; and (2) experimental data from a vertical exposure experiment where fish were forced to swim at different depths with a lice-barrier technology. Model simulations tested were different development time to the infective stage (35 or 50°-days), with or without the presence of temperature-controlled vertical behaviour of lice early planktonic stages (naupliar stages). The best model fit occurred with a 35°-day development time to the infective stage, and temperature-controlled vertical behaviour. We applied this model to predict the effectiveness of depth-based preventive lice-barrier technologies. Both simulated and experimental data revealed that hindering fish from swimming close to the surface efficiently reduced lice infection. Moreover, while our model simulation predicted that this preventive technology is widely applicable, its effectiveness will depend on environmental conditions. Low salinity surface waters reduce the effectiveness of this technology because salmon lice avoid these conditions, and can encounter the fish as they sink deeper in the water column. Correctly parameterized and validated salmon lice dispersal models can predict the impact of preventive approaches to control this parasite and become an essential tool in lice management strategies.


Subject(s)
Arguloida/physiology , Lice Infestations/veterinary , Salmon/parasitology , Animals , Aquaculture , Computer Simulation , Disease Models, Animal , Fish Diseases/parasitology , Fisheries , Lice Infestations/prevention & control , Linear Models , Models, Biological , Norway
16.
Dis Aquat Organ ; 117(3): 171-6, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758650

ABSTRACT

The Pacific oyster Crassostrea gigas has recently expanded its range in Scandinavia. The expansion is presumably a result of northwards larval drift. Massive settlements were recorded in many areas along the Swedish west coast and southern Norway in 2013 and 2014. After the spawning season in 2014, the temperature of the surface water peaked at 24-26°C. After this period, high and sudden mortalities occurred in a Swedish hatchery and in wild populations along the Swedish west coast and south coast of Norway. Surveys and collected data showed that mortalities mainly occurred during 3 wk in September. All size classes were affected, and affected populations displayed a patchy distribution with heavily affected and unaffected populations in close proximity. Flat oysters Ostrea edulis and blue mussels Mytilus edulis were unaffected. Ostreid herpesvirus (OsHV) was detected in moribund Pacific oyster spat as well as in surviving adults. The virus was identified as OsHV-1 µvar. This is the first detection of this variant in Scandinavia, showing that OsHV-1 µvar is present in areas with recent establishments of Pacific oysters, and where there is no aquaculture of this species.


Subject(s)
Crassostrea/virology , Herpesviridae/physiology , Seasons , Animals , Base Sequence , DNA, Viral/isolation & purification , Genetic Variation , Herpesviridae/genetics , Host-Pathogen Interactions , Molecular Sequence Data , Norway , Polymerase Chain Reaction , Sweden
17.
J Anim Ecol ; 85(3): 628-37, 2016 05.
Article in English | MEDLINE | ID: mdl-26476092

ABSTRACT

Habitat selection is a complex process, which involves behavioural decisions guided by the multiple needs and constraints faced by individuals. Climate-induced changes in environmental conditions may alter those trade-offs and resulting habitat use patterns. In this study, we investigated the effect of sea temperature on habitat selection and habitat use of acoustically tagged Atlantic cod (Gadus morhua) at the Norwegian Skagerrak coast. Significant relationships between ocean temperature and habitat selection and use were found. Under favourable sea temperature thresholds (<16 °C), cod selected vegetated habitats, such as eelgrass and macroalgae beds, available in shallow areas. Selection for those habitats was especially high at night, when cod tended to ascend to shallower areas, presumably to feed. Selection and use of those habitats decreased significantly as temperature rose. Under increased sea surface temperature conditions, cod were absent from vegetated shallow habitats, both during the day and night, and selected instead non-vegetated rocky bottoms and sand habitats, available in deeper, colder areas. This study shows the dynamic nature of habitat selection and strongly suggests that cod in this region have to trade off food availability against favourable temperature conditions. Future increases in ocean temperature are expected to further influence the spatial behaviour of marine fish, potentially affecting individual fitness and population dynamics.


Subject(s)
Ecosystem , Gadus morhua/physiology , Temperature , Animals , Norway , Oceans and Seas
18.
Mol Ecol ; 24(8): 1742-57, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25782085

ABSTRACT

The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment.


Subject(s)
Adaptation, Physiological/genetics , Genetics, Population , Pandalidae/classification , Temperature , Animal Distribution , Animals , Atlantic Ocean , Gene Flow , Microsatellite Repeats , Models, Genetic , Models, Statistical
19.
PLoS One ; 8(6): e67492, 2013.
Article in English | MEDLINE | ID: mdl-23840721

ABSTRACT

One mechanism by which marine organisms may respond to climate shifts is range shifts. The corkwing wrasse (Symphodus melops) is a temperate fish species, inhabiting the coasts of Europe, that show strong indications of current as well as historical (ice-age) range shifts towards the north. Nine neutral microsatellite DNA markers were screened to study genetic signatures and spatial population structure over the entire geographic and thermal gradient of the species from Portugal to Norway. A major genetic break (F ST  = 0.159 average among pairs) was identified between Scandinavian and more southern populations, with a marked reduction (30% or more) in levels of genetic variability in Scandinavia. The break is probably related to bottleneck(s) associated with post-glacial colonization of the Scandinavian coasts, and indicates a lack of present gene flow across the North Sea. The lack of gene flow can most likely be attributed to the species' need for rocky substrate for nesting and a relatively short pelagic larval phase, limiting dispersal by ocean currents. These findings demonstrate that long-distance dispersal may be severely limited in the corkwing wrasse, and that successful range-shifts following present climate change may be problematic for this and other species with limited dispersal abilities, even in the seemingly continuous marine environment.


Subject(s)
Climate Change , Fishes/genetics , Gene Flow , Genetic Variation , Genetics, Population , Microsatellite Repeats , Animals , DNA, Mitochondrial/genetics , North Sea
20.
PLoS One ; 6(11): e27367, 2011.
Article in English | MEDLINE | ID: mdl-22110633

ABSTRACT

BACKGROUND: Individual-based biophysical larval models, initialized and parameterized by observations, enable numerical investigations of various factors regulating survival of young fish until they recruit into the adult population. Exponentially decreasing numbers in Northeast Arctic cod and Norwegian Spring Spawning herring early changes emphasizes the importance of early life history, when ichthyoplankton exhibit pelagic free drift. However, while most studies are concerned with past recruitment variability it is also important to establish real-time predictions of ichthyoplankton distributions due to the increasing human activity in fish habitats and the need for distribution predictions that could potentially improve field coverage of ichthyoplankton. METHODOLOGY/PRINCIPAL FINDINGS: A system has been developed for operational simulation of ichthyoplankton distributions. We have coupled a two-day ocean forecasts from the Norwegian Meteorological Institute with an individual-based ichthyoplankton model for Northeast Arctic cod and Norwegian Spring Spawning herring producing daily updated maps of ichthyoplankton distributions. Recent years observed spawning distribution and intensity have been used as input to the model system. The system has been running in an operational mode since 2008. Surveys are expensive and distributions of early stages are therefore only covered once or twice a year. Comparison between model and observations are therefore limited in time. However, the observed and simulated distributions of juvenile fish tend to agree well during early fall. Area-overlap between modeled and observed juveniles September 1(st) range from 61 to 73%, and 61 to 71% when weighted by concentrations. CONCLUSIONS/SIGNIFICANCE: The model system may be used to evaluate the design of ongoing surveys, to quantify the overlap with harmful substances in the ocean after accidental spills, as well as management planning of particular risky operations at sea. The modeled distributions are already utilized during research surveys to estimate coverage success of sampled biota and immediately after spills from ships at sea.


Subject(s)
Gadiformes/physiology , Models, Biological , Movement , Ovum/physiology , Reproduction , Seasons , Animals , Arctic Regions , Female , Larva , Norway , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...