Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 116(42): 12694-705, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23013156

ABSTRACT

Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.


Subject(s)
Muramidase/chemistry , Sodium Chloride/chemistry , Diffusion , Electrophoresis , Interferometry , Muramidase/metabolism , Osmotic Pressure , Solutions , Thermodynamics , Water/chemistry
2.
J Phys Chem B ; 113(40): 13446-53, 2009 Oct 08.
Article in English | MEDLINE | ID: mdl-19746957

ABSTRACT

We have experimentally investigated multicomponent diffusion in a protein-polymer-salt-water quaternary system. Specifically, we have measured the nine multicomponent diffusion coefficients, D(ij), for the lysozyme-poly(ethylene glycol)-NaCl-water system at pH 4.5 and 25 degrees C using precision Rayleigh interferometry. Lysozyme is a model protein for protein-crystallization and enzymology studies. We find that the protein diffusion coefficient, D(11), decreases as polymer concentration increases at a given salt concentration. This behavior can be quantitatively related to the corresponding increase in fluid viscosity only at low polymer concentration. However, at high polymer concentration (250 g/L), protein diffusion is enhanced compared to the corresponding viscosity prediction. We also find that a protein concentration gradient induces salt diffusion from high to low protein concentration. This effect increases in the presence of poly(ethylene glycol). Finally, we have evaluated systematic errors associated with measurements of protein diffusion coefficients by dynamic light scattering. This work overall helps characterize protein diffusion in crowded environments and may provide guidance for further theoretical developments in the field of protein crystallization and protein diffusion in such crowded systems, such as the cytoplasm of living cells.


Subject(s)
Muramidase/chemistry , Polyethylene Glycols/chemistry , Salts/chemistry , Water/chemistry , Animals , Diffusion , Interferometry , Thermodynamics , Viscosity
3.
J Phys Chem B ; 112(16): 4967-74, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18376888

ABSTRACT

Poly(ethylene glycol) (PEG) is a hydrophilic nonionic polymer used in many biochemical and pharmaceutical applications. We report the four diffusion coefficients for the PEG-KCl-water ternary system at 25 degrees C using precision Rayleigh interferometry. Here, the molecular weight of PEG is 20 kg mol(-1), which is comparable to that of proteins. The four diffusion coefficients are examined and used to determine thermodynamic preferential interaction coefficients. We find that the PEG preferential hydration in the presence of KCl is 1 order of magnitude larger than that previously obtained under the same conditions for lysozyme, a protein of similar molecular weight. In correspondence, the coupled diffusion in the PEG case was greater than that observed in the lysozyme case. We attribute this difference to the greater exposure of polymer coils to the surrounding fluid compared to that of globular compact proteins. Moreover, we observe that the PEG preferential hydration significantly decreases as salt concentration increases and attribute this behavior to the polymer collapse. Finally, we have also employed the equilibrium isopiestic method to validate the accuracy of the preferential interaction coefficients extracted from the diffusion coefficients. This experimental comparison represents an important contribution to the relation between diffusion and equilibrium thermodynamics.

4.
J Phys Chem B ; 111(35): 10591-8, 2007 Sep 06.
Article in English | MEDLINE | ID: mdl-17696467

ABSTRACT

To investigate the effect of calcium salts on the thermodynamic and transport properties of aqueous solutions of proteins, we report ternary diffusion coefficients for the lysozyme-CaCl2-water ternary system at 25 degrees C and pH 4.5. We have used our ternary diffusion coefficients to calculate preferential-interaction coefficients as a function of salt concentration. This has allowed us to characterize protein-salt thermodynamic interactions. We have observed the presence of large common-ion effects by examining the dependence of the diffusion coefficients on salt concentration. Our results are compared to those previously reported for the lysozyme-MgCl2-water ternary system. We have found that the common-ion effect is essentially the same for both salt cases. On the other hand, by examining the dependence of the preferential-interaction coefficient on salt concentration, we have found that salt preferentially interacts with the protein in the lysozyme-CaCl2-water system, whereas water preferentially interacts with the protein in lysozyme-MgCl2-water system. This is consistent with the known generally larger affinity of Mg2+ for water, as compared to Ca2+, and the different roles that these two divalent metal ions play in biochemical processes. We remark that neglecting the common-ion contribution of the preferential-interaction coefficient can lead to qualitatively inaccurate descriptions of protein-salt aqueous systems, even at high salt concentrations. Indeed, for the lysozyme-CaCl2 system, this approximation would lead to interpretations inconsistent with the known destabilizing effect of calcium ions on proteins.


Subject(s)
Calcium Chloride/chemistry , Muramidase/chemistry , Diffusion , Egg Proteins/chemistry , Solutions , Thermodynamics , Water/chemistry
5.
J Phys Chem B ; 110(32): 16139-47, 2006 Aug 17.
Article in English | MEDLINE | ID: mdl-16898772

ABSTRACT

We report the four diffusion coefficients for the lysozyme-MgCl2-water ternary system at 25 degrees C and pH 4.5. The comparison with previous results for the lysozyme-NaCl-water ternary system is used to examine the effect of salt stoichiometry on the transport properties of lysozyme-salt aqueous mixtures. We find that the two cross-diffusion coefficients are very sensitive to salt stoichiometry. One of the cross-diffusion coefficients is examined in terms of common-ion, excluded-volume, and protein-preferential hydration effects. We use the four ternary diffusion coefficients to extract chemical-potential cross-derivatives and protein-preferential interaction coefficients. These thermodynamic data characterize the protein-salt thermodynamic interactions. We demonstrate the presence of the common-ion effect (Donnan effect) by analyzing the dependence of the preferential-interaction coefficient not only with respect to salt concentration but also with respect to salt stoichiometry. We conclude that the common-ion effect and the protein-preferential hydration are both important for describing the lysozyme-MgCl2 thermodynamic interaction.


Subject(s)
Magnesium Chloride/chemistry , Muramidase/chemistry , Diffusion , Sodium Chloride/chemistry , Solutions/chemistry , Stereoisomerism , Thermodynamics , Water/chemistry
6.
J Phys Chem B ; 110(3): 1405-15, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16471691

ABSTRACT

We use accurate thermodynamic derivatives extracted from high-precision measurements of the four volume-fixed diffusion coefficients in ternary solutions of lysozyme chloride in aqueous NaCl, NH4Cl, and KCl at pH 4.5 and 25 degrees C to (a) assess the relative contributions of the common-ion and nonideality effects to the protein chemical potential as a function of salt concentration, (b) compare the behavior of the protein chemical potential for the three salts, which we found to be consistent with the Hofmeister series, and (c) discuss our thermodynamic data in relation to the dependence of the protein solubility on salt concentration. The four diffusion coefficients are reported at 0.6 mM lysozyme chloride and 0.25, 0.5, 0.9, 1.2, and 1.5 M KCl and extend into the protein-supersaturated region. The chemical potential cross-derivatives are extracted from diffusion data using the Onsager reciprocal relation and the equality of molal cross-derivatives of solute chemical potentials. They are compared to those calculated previously from diffusion data for lysozyme in aqueous NaCl and NH4Cl. We estimate the effective charge on the diffusing lysozyme cation at the experimental concentrations. Our diffusion measurements on the three salts allowed us to analyze and interpret the four diffusion coefficients for charged proteins in the presence of 1:1 electrolytes. Our results may provide guidance to the understanding of protein crystallization.


Subject(s)
Ammonium Chloride/chemistry , Chlorides/chemistry , Muramidase/chemistry , Potassium Chloride/chemistry , Sodium Chloride/chemistry , Diffusion , Solutions/chemistry , Thermodynamics , Water/chemistry
7.
Langmuir ; 21(26): 12085-9, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16342976

ABSTRACT

Dynamic light scattering (DLS) is extensively used for measuring macromolecule diffusion coefficients. Contrary to classical techniques based on macroscopic concentration gradients, DLS probes microscopic fluctuations in concentration. DLS accuracy and its concordance with macroscopic-gradient techniques remains an outstanding important issue. We measured lysozyme diffusion coefficients in aqueous salt using both DLS and Rayleigh interferometry, a highly accurate macroscopic-gradient technique. The precision of our results is unprecedented. We find that our DLS values were systematically 2% higher than interferometry values. We believe that our interferometric measurements have produced the most accurate diffusion data ever reported for a protein, providing a new standard for quality control of DLS measurements. Furthermore, by interferometry, we have determined the whole diffusion coefficient matrix required for rigorously describing lysozyme-salt coupled diffusion. For the first time, we experimentally demonstrate that DLS does not provide the protein diffusion coefficient but one eigenvalue of the diffusion coefficient matrix.


Subject(s)
Muramidase/chemistry , Diffusion , Light , Scattering, Radiation
8.
Ann N Y Acad Sci ; 974: 610-23, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12446352

ABSTRACT

Equations are presented that model diffusion of a protein to the surface of a growing crystal in a convection-free environment. The equations apply to crystal growth solutions that contain both a protein and a protein precipitant. The solutions are assumed ternary and the equations include all four diffusion coefficients necessary for the full description of the diffusion process. The four diffusion coefficients are assumed constant. Effects of crystal/solution moving boundary and the effect of a protein adsorption barrier at the crystal interface are included. The equations were applied to the system lysozyme chloride + NaCl + H2O, which has served as the primary model system for the study of crystal growth of proteins and for which there are now published ternary diffusion coefficients. Calculated results with and without the inclusion of cross-term diffusion coefficients are compared.


Subject(s)
Models, Chemical , Proteins/chemistry , Weightlessness , Chemical Precipitation , Diffusion , Mathematics
SELECTION OF CITATIONS
SEARCH DETAIL
...