Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 35(12): 5419-25, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19175101

ABSTRACT

The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.


Subject(s)
Boron Neutron Capture Therapy/methods , Boron Neutron Capture Therapy/standards , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Boron/pharmacology , Boron Compounds/pharmacology , Clinical Trials as Topic , Humans , Isotopes/pharmacology , Phantoms, Imaging , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Radiation-Sensitizing Agents/pharmacology , Radiometry/statistics & numerical data , Radiotherapy Dosage , Reproducibility of Results , Software , Treatment Outcome
2.
Radiat Prot Dosimetry ; 126(1-4): 610-4, 2007.
Article in English | MEDLINE | ID: mdl-17522033

ABSTRACT

Normalisation of prescribed dose in boron neutron capture therapy (BNCT) is needed to facilitate combining clinical data from different centres in the world to help expedite development of the modality. The approach being pursued within the BNCT community is based upon improving precision in the measurement and specification of absorbed dose. Beam characterisations using a common method are complete as are comparative dosimetry measurements between clinical centres in Europe and the USA. Results from treatment planning systems at these centres have been compared with measurements performed by MIT, and the scale factors determined are being confirmed with independent tests using measurements in an ellipsoidal water phantom. Dose normalisations have successfully been completed and applied to retrospectively analyse treatment plans from Brookhaven National Laboratory (1994-99) so that reported doses are consistently expressed with the trials performed during 1994-2003 at Harvard-MIT. Dose response relationships for adverse events and other endpoints can now be more accurately established.


Subject(s)
Boron Neutron Capture Therapy/instrumentation , Boron Neutron Capture Therapy/standards , Neutrons , Radiometry/instrumentation , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/standards , Boron Neutron Capture Therapy/methods , Equipment Design , Equipment Failure Analysis , Humans , Internationality , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
3.
Appl Radiat Isot ; 61(5): 765-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15308141

ABSTRACT

A flexible technique for positioning patients in fixed orientation radiation fields such as those used in neutron capture therapy (NCT) has been developed. The positioning technique employs reference points marked on the patient in combination with a 3D digitizer to determine the beam entry point and a template fitted to the patient's head is used to determine the proper beam orientation. A coordinate transformation between the CT image data and reference points on the patient determined by a least squares algorithm based on singular value decomposition is used to map the beam entry point from the planning system onto the patient. The technique was validated in a phantom study where the mean error in entry point placement was 1.3 mm. Five glioblastoma multiforme patients have been treated with NCT using this positioning technique.


Subject(s)
Boron Neutron Capture Therapy/methods , Algorithms , Boron Neutron Capture Therapy/instrumentation , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Glioblastoma/radiotherapy , Humans , Immobilization/methods , Least-Squares Analysis , Melanoma/radiotherapy , Melanoma/secondary , Phantoms, Imaging , Posture , Radiotherapy Planning, Computer-Assisted/statistics & numerical data , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...