Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mol Diagn ; 25(3): 156-167, 2023 03.
Article in English | MEDLINE | ID: mdl-36563937

ABSTRACT

Nearly 14% of disease-causing germline variants result from the disruption of mRNA splicing. Most (67%) DNA variants predicted in silico to disrupt splicing are classified as variants of uncertain significance. An analytic workflow-splice effect event resolver (SPEER)-was developed and validated to use mRNA sequencing to reveal significant deviations in splicing, pinpoint the DNA variants potentially involved, and measure the deleterious effects of the altered splicing on mRNA transcripts, providing evidence for assessing the pathogenicity of the variant. SPEER was used to analyze leukocyte RNA encoding 63 hereditary cancer syndrome-related genes in 20,317 patients. Among 3563 patients (17.5%) with at least one DNA variant predicted to affect splicing, 971 (4.8%) had altered splicing with a deleterious effect on the transcript, and 40 had altered splicing due to a DNA variant located outside of the reportable range of the test. Integrating SPEER results into the interpretation of variants allowed variants of uncertain significance to be reclassified as pathogenic or likely pathogenic in 0.4%, and as benign or likely benign in 5.9%, of the 20,317 patients. SPEER-based evidence was associated with a significantly greater effect on classifications of pathogenic or likely pathogenic and benign or likely benign in nonwhite versus non-Hispanic white patients, illustrating that evidence derived from mRNA splicing analysis may help to reduce ethnic/ancestral disparities in genetic testing.


Subject(s)
Genetic Testing , Neoplastic Syndromes, Hereditary , Humans , Genetic Testing/methods , RNA Splicing , RNA, Messenger/genetics , RNA , Neoplastic Syndromes, Hereditary/genetics
2.
Elife ; 112022 Nov 04.
Article in English | MEDLINE | ID: mdl-36331876

ABSTRACT

Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.


Subject(s)
Caenorhabditis elegans , Gene Expression Regulation , Animals , Caenorhabditis elegans/genetics , Dosage Compensation, Genetic , X Chromosome/genetics
3.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35731207

ABSTRACT

Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Chromosome Duplication , DNA Copy Number Variations , Dosage Compensation, Genetic , Gene Dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , X Chromosome
4.
J Cell Sci ; 135(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34918745

ABSTRACT

Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


Subject(s)
Caenorhabditis elegans Proteins , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins , Histone Demethylases , Histones/genetics , Lysine , Multiprotein Complexes , X Chromosome/metabolism
5.
Genetics ; 212(3): 729-742, 2019 07.
Article in English | MEDLINE | ID: mdl-31123040

ABSTRACT

Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In Caenorhabditis elegans, a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses X chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using chromatin immunoprecipitation sequencing and mRNA sequencing. Across the X, the DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. The DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In X-to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of X chromosomal gene regulatory elements.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Dosage Compensation, Genetic , Histone Code , Multiprotein Complexes/metabolism , Regulatory Sequences, Nucleic Acid , X Chromosome/genetics , Adenosine Triphosphatases/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , Histones/genetics , Histones/metabolism , Multiprotein Complexes/genetics , Transcription Factors/metabolism , X Chromosome/metabolism
6.
Trends Genet ; 34(1): 41-53, 2018 01.
Article in English | MEDLINE | ID: mdl-29037439

ABSTRACT

Recent work demonstrating the role of chromosome organization in transcriptional regulation has sparked substantial interest in the molecular mechanisms that control chromosome structure. Condensin, an evolutionarily conserved multisubunit protein complex, is essential for chromosome condensation during cell division and functions in regulating gene expression during interphase. In Caenorhabditis elegans, a specialized condensin forms the core of the dosage compensation complex (DCC), which specifically binds to and represses transcription from the hermaphrodite X chromosomes. DCC serves as a clear paradigm for addressing how condensins target large chromosomal domains and how they function to regulate chromosome structure and transcription. Here, we discuss recent research on C. elegans DCC in the context of canonical condensin mechanisms as have been studied in various organisms.


Subject(s)
Adenosine Triphosphatases/genetics , Caenorhabditis elegans/genetics , DNA-Binding Proteins/genetics , Dosage Compensation, Genetic , Multiprotein Complexes/genetics , Animals , Female , Gene Expression Regulation , X Chromosome
7.
Elife ; 62017 05 30.
Article in English | MEDLINE | ID: mdl-28562241

ABSTRACT

In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation.


Subject(s)
Caenorhabditis elegans/genetics , Dosage Compensation, Genetic , X Chromosome/metabolism , Animals , Chromatin/metabolism , Syndecan-2/metabolism
9.
PLoS Genet ; 11(12): e1005698, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26641248

ABSTRACT

In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Dosage Compensation, Genetic , Embryonic Development , Histone-Lysine N-Methyltransferase/genetics , Nuclear Proteins/genetics , Animals , Caenorhabditis elegans , Chromatin/genetics , Female , Male , Mutation , X Chromosome/genetics
10.
Genetics ; 197(3): 865-83, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793291

ABSTRACT

Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive.


Subject(s)
Gene Expression Regulation , Nematoda/genetics , Sexism , X Chromosome/genetics , Animals , Caenorhabditis/genetics , Evolution, Molecular , Female , Gene Dosage , Genes, Helminth , Genes, X-Linked , Gonads/metabolism , Haploinsufficiency/genetics , Hermaphroditic Organisms/genetics , Male , Organ Specificity/genetics , Phylogeny , Species Specificity
11.
Genome Biol ; 14(10): R112, 2013.
Article in English | MEDLINE | ID: mdl-24125077

ABSTRACT

BACKGROUND: Condensins are multi-subunit protein complexes that are essential for chromosome condensation during mitosis and meiosis, and play key roles in transcription regulation during interphase. Metazoans contain two condensins, I and II, which perform different functions and localize to different chromosomal regions. Caenorhabditis elegans contains a third condensin, I(DC), that is targeted to and represses transcription of the X chromosome for dosage compensation. RESULTS: To understand condensin binding and function, we performed ChIP-seq analysis of C. elegans condensins in mixed developmental stage embryos, which contain predominantly interphase nuclei. Condensins bind to a subset of active promoters, tRNA genes and putative enhancers. Expression analysis in kle-2-mutant larvae suggests that the primary effect of condensin II on transcription is repression. A DNA sequence motif, GCGC, is enriched at condensin II binding sites. A sequence extension of this core motif, AGGG, creates the condensin IDC motif. In addition to differences in recruitment that result in X-enrichment of condensin I(DC) and condensin II binding to all chromosomes, we provide evidence for a shared recruitment mechanism, as condensin I(DC) recruiter SDC-2 also recruits condensin II to the condensin I(DC) recruitment sites on the X. In addition, we found that condensin sites overlap extensively with the cohesin loader SCC-2, and that SDC-2 also recruits SCC-2 to the condensin I(DC) recruitment sites. CONCLUSIONS: Our results provide the first genome-wide view of metazoan condensin II binding in interphase, define putative recruitment motifs, and illustrate shared loading mechanisms for condensin I(DC) and condensin II.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genome-Wide Association Study , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Animals , Base Sequence , Binding Sites , Chromatin Immunoprecipitation , Chromosomes/genetics , Chromosomes/metabolism , High-Throughput Nucleotide Sequencing , Male , Mutation , Nucleotide Motifs , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Protein Binding , Reproducibility of Results , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...