Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 Nov 04.
Article in English | MEDLINE | ID: mdl-36331876

ABSTRACT

Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.


Subject(s)
Caenorhabditis elegans , Gene Expression Regulation , Animals , Caenorhabditis elegans/genetics , Dosage Compensation, Genetic , X Chromosome/genetics
2.
J Cell Sci ; 135(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34918745

ABSTRACT

Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


Subject(s)
Caenorhabditis elegans Proteins , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins , Histone Demethylases , Histones/genetics , Lysine , Multiprotein Complexes , X Chromosome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...