Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(50): 35493-35499, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38058560

ABSTRACT

The impact of vaccination on the world's population is difficult to calculate. For developing different types of vaccines, adjuvants are substances added to vaccines to increase the magnitude and durability of the immune response and the effectiveness of the vaccine. This work explores the potential use of spherical gold nanoparticles (AuNPs) as adjuvants. Thus, we employed docking techniques and molecular mechanics to describe how a AuNP 7.0 nm in diameter interacts with cell signaling pathway proteins. Initially, we used X-ray crystallization data of the proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K, and NF-Kß to study the adsorption with an AuNP through molecular docking. Therefore, interaction energies were obtained for the AuNP complexes and individual proteins, as well as the AuNP and OVA complex (AuNP@OVA) with each cellular protein, respectively. Results showed that AuNPs had the highest affinity for OVA individually, followed by glutathione, ASC PYCARD domain, LC3, PI3K, NF-Kß, and TLR4. Furthermore, when evaluating the AuNP@OVA complex, glutathione showed a greater affinity with more potent interaction energy when compared to the other studied systems.

2.
RSC Adv ; 12(44): 28395-28404, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320533

ABSTRACT

Losartan (LST) is a potent and selective angiotensin II (Ang II) type 1 (AT1) receptor antagonist widely used in the treatment of hypertension. The formation of Ang II is catalyzed by the angiotensin I-converting enzyme (ACE) through proteolytic cleavage of angiotensin I (Ang I), which is involved in the control of blood pressure. Despite the vast literature on the relationship of losartan with the renin-angiotensin system (RAS), the actions of losartan on the sACE enzyme are so far poorly understood. In view of this, we investigated how losartan can interact with the sACE enzyme to block its activity and intracellular signaling. After performing docking assays following quantum biochemistry calculations using losartan and sACE crystallographic data, we report that their interaction results reveal a new mechanism of action with important implications for understanding its effects on hypertension.

3.
Phys Chem Chem Phys ; 22(27): 15683-15695, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32618974

ABSTRACT

The emergent Zika virus (ZIKV) infection has become a threat to global health due to its association with severe neurological abnormalities, namely Guillain-Barré Syndrome (GBS) in adults and Congenital Zika virus Syndrome (CZS) in neonates. Many studies are nowadays being conducted to find an effective antiviral drug against ZIKV. In particular, NS2B-NS3 protease is an attractive drug target due to its essential function in viral replication, although a drug is not yet commercially available. In this context, we present here a comparative structural study, based on quantum chemistry calculations, to analyze the intermolecular binding energies between the crystallographic structure of NS2B-NS3 protease and dipeptide boronic acid (cn-716) and aldehyde (acyl-KR-aldehyde) peptidomimetic inhibitors, by using the molecular fractionation with conjugate caps (MFCC) scheme within the density functional theory (DFT) formalism. Most intermolecular interactions in cn-716/NS2B-NS3 (acyl-KR-aldehyde/NS2B-NS3) are due to the amino acid residues Asp83*, His51, Asp129, Ser81*, Gly133, Ala132, Tyr161, Asn152 and Asp75 (Asp83*, Asp129, His51, Asn152, Tyr161, Tyr130, Gly153, Gly151, Asp75, Pro131, and Gly82). Additionally, we have considered missense mutation analysis of these residues to evaluate the destabilization and the increase of the flexibility of the protease, showing that mutation of the residues Tyr161 and Tyr130 causes more impact. Our simulations are a valuable tool for a better understanding of the binding mechanism of recognized inhibitors of NS2B-NS3 protease, and can lead to the rational design and development of novel anti-Zika drugs with improved efficiency.


Subject(s)
Aldehydes/pharmacology , Antiviral Agents/pharmacology , Boronic Acids/pharmacology , Dipeptides/pharmacology , Protease Inhibitors/pharmacology , Zika Virus/drug effects , Aldehydes/chemistry , Antiviral Agents/chemistry , Boronic Acids/chemistry , Density Functional Theory , Dipeptides/chemistry , Microbial Sensitivity Tests , Molecular Conformation , Peptidomimetics/antagonists & inhibitors , Peptidomimetics/metabolism , Protease Inhibitors/chemistry , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Zika Virus/metabolism
4.
J Chem Inf Model ; 60(2): 1005-1018, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31880447

ABSTRACT

GABAB is a G protein-coupled receptor that functions as a constitutive heterodimer composed of the GABAB1a/b and GABAB2 subunits. It mediates slow and prolonged inhibitory neurotransmission in the nervous system, representing an attractive target for the treatment of various disorders. However, the molecular mechanism of the GABAB receptor is not thoroughly understood. Therefore, a better description of the binding of existing agonists and antagonists to this receptor is crucial to improve our knowledge about G protein-coupled receptor structure as well as for helping the development of new potent and more selective therapeutic agents. In this work, we used the recent X-ray cocrystallization data of agonists (GABA and baclofen) and antagonists (2-hydroxysaclofen, SCH50911, and CGP54626) bound to the GABAB orthosteric site together with quantum biochemistry and the molecular fractionation with conjugate caps (MFCC) scheme to describe the individual contribution of each amino acid residue involved in the GABAB-ligand interaction, pointing out differences and similarities among the compounds. Our quantum biochemical computational results show that the total binding energy of the ligands to the GABAB ligand pocket, with radius varying from 2.0 to 9.0 Å, is well-correlated with the experimental binding affinity. In addition, we found that the binding site is very similar for agonists or antagonists, showing small differences in the importance of the most significant amino acids. Finally, we predict the energetic relevance of the regions of the five ligands as well as the influence of each protein lobe on GABAB-ligand binding. These results provide important new information on the binding mechanism of the GABAB receptor and should facilitate the development of new chemicals targeting this receptor.


Subject(s)
Computer Simulation , GABA-B Receptor Agonists/metabolism , GABA-B Receptor Antagonists/metabolism , Models, Molecular , Receptors, GABA-B/metabolism , Protein Binding , Protein Conformation , Receptors, GABA-B/chemistry , Thermodynamics
5.
Phys Chem Chem Phys ; 21(35): 19192-19200, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31436279

ABSTRACT

Despite advances, tuberculosis remains a significant infectious disease, whose mortality presents alarming numbers. Although it can be cured, the number of cases of antimicrobial resistant strains is increasing, requiring the use of less efficient second-line drugs. Capreomycin and streptomycin are part of this group, being antibiotics whose mechanism of action is the inhibition of protein synthesis when interacting with the tuberculosis bacterial ribosome. Their binding mechanisms are distinct: capreomycin is able to bind to both ribosomal (30S and 50S) subunits, whereas streptomycin binds only to the smaller one (30S). In this context, the biochemical characterization of these binding sites for a proper understanding of their complex interactions is of crucial importance to increase their efficacy. Through crystallographic data and computer simulations, in this work we calculated the interaction binding energies of capreomycin and streptomycin in complex with the tuberculosis bacterial ribosome subunits, by using density functional theory (DFT) within the molecular fractionation with conjugated caps (MFCC) approach. For capreomycin in the 30S (50S) subunit, we investigated the binding energies of 44 (30) residues presented within a pocket radius of 14 Å (30 Å). Regarding streptomycin, 60 nucleotide (25 amino acid) residues distributed up to 12.5 Å (15 Å) away from the drug in the 30S subunit (S12 protein) were taken into account. We also identify the contributions of hydrogen bonds and hydrophobic interactions in the drug-receptor complex, and the regions of the drugs that most contributed to the anchorages of them in their binding sites, as well as identify residues that are most associated with mutations.


Subject(s)
Anti-Bacterial Agents/chemistry , Capreomycin/chemistry , Energy Metabolism , Mycobacterium tuberculosis/metabolism , Ribosome Subunits/chemistry , Ribosome Subunits/metabolism , Streptomycin/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/therapeutic use , Capreomycin/metabolism , Capreomycin/therapeutic use , Computer Simulation , Crystallization , Humans , Mutation , Mycobacterium tuberculosis/chemistry , Receptors, Drug/genetics , Receptors, Drug/metabolism , Streptomycin/metabolism , Streptomycin/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology
6.
J Phys Chem B ; 123(30): 6421-6429, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31283875

ABSTRACT

We intend to investigate the drug-binding energy of each nucleotide inside the aminoglycoside hygromycin B (hygB) binding site of 30S ribosomal RNA (rRNA) subunit by using the molecular fractionation with conjugate caps (MFCC) strategy based on the density functional theory (DFT), considering the functional LDA/PWC, OBS, and the dielectric constant parametrization. Aminoglycosides are bactericidal antibiotics that have high affinity to the prokaryotic rRNA, inhibiting the synthesis of proteins by acting on the main stages of the translation mechanism, whereas binding to rRNA 16S, a component of the 30S ribosomal subunit in prokaryotes. The identification of the nucleotides presenting the most negative binding energies allows us to stabilize hygB in a suitable binding pocket of the 30S ribosomal subunit. In addition, it should be highlighted that mutations in these residues may probably lead to resistance to ribosome-targeting antibiotics. Quantum calculations of aminoglycoside hygromycin B-ribosome complex might contribute to further quantum studies with antibiotics like macrolides and other aminoglycosides.


Subject(s)
Density Functional Theory , Hygromycin B/chemistry , RNA, Ribosomal/chemistry , Bacteria/chemistry , Bacteria/metabolism , Binding Sites , Computer Simulation , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Thermodynamics
7.
Malar J ; 17(1): 482, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30567541

ABSTRACT

BACKGROUND: Plasmodium falciparum has shown multidrug resistance, leading to the necessity for the development of new drugs with novel targets, such as the synthesis of isoprenic precursors, which are excellent targets because the pathway is different in several steps when compared with the human host. Naphthoquinone derivatives have been described as potentially promising for the development of anti-malarial leader molecules. In view of that, the focus in this work is twofold: first, evaluate the in vitro naphthoquinone antiplasmodial activity and cytotoxicity; secondly, investigate one possible action mechanism of two derivatives of hydroxy-naphthoquinones. RESULTS: The two hydroxy-naphthoquinones derivatives have been tested against P. falciparum in vitro, using strains of parasites chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2), causing 50% inhibition of parasite growth with concentrations that varied from 7 to 44.5 µM. The cell viability in vitro against RAW Cell Line displayed IC50 = 483.5 and 714.9 µM, whereas, in primary culture tests using murine macrophages, IC50 were 315.8 and 532.6 µM for the two selected compounds, causing no haemolysis at the doses tested. The in vivo acute toxicity assays exhibited a significant safety margin indicated by a lack of systemic and behavioural toxicity up to 300 mg/kg. It is suggested that this drug seems to inhibit the biosynthesis of isoprenic compounds, particularly the menaquinone and tocopherol. CONCLUSIONS: These derivatives have a high potential for the development of new anti-malarial drugs since they showed low toxicity associated to a satisfactory antiplasmodial activity and possible inhibition of a metabolic pathway distinct from the pathways found in the mammalian host.


Subject(s)
Aniline Compounds/pharmacology , Antimalarials/pharmacology , Metabolic Networks and Pathways/drug effects , Naphthoquinones/pharmacology , Plasmodium falciparum/drug effects , Terpenes/metabolism , Aniline Compounds/pharmacokinetics , Antimalarials/pharmacokinetics , Malaria, Falciparum/drug therapy , Naphthoquinones/pharmacokinetics , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism
8.
Parasitology ; 145(9): 1191-1198, 2018 08.
Article in English | MEDLINE | ID: mdl-29642963

ABSTRACT

Chagas disease is a public health problem, affecting about 7 million people worldwide. Benznidazole (BZN) is the main treatment option, but it has limited effectiveness and can cause severe adverse effects. Drug delivery through nanoparticles has attracted the interest of the scientific community aiming to improve therapeutic options. The aim of this study was to evaluate the cytotoxicity of benznidazole-loaded calcium carbonate nanoparticles (BZN@CaCO3) on Trypanosoma cruzi strain Y. It was observed that BZN@CaCO3 was able to reduce the viability of epimastigote, trypomastigote and amastigote forms of T. cruzi with greater potency when compared with BZN. The amount of BZN necessary to obtain the same effect was up to 25 times smaller when loaded with CaCO3 nanoparticles. Also, it was observed that BZN@CaCO3 enhanced the selectivity index. Furthermore, the cell-death mechanism induced by both BZN and BZN@CaCO3 was evaluated, indicating that both substances caused necrosis and changed mitochondrial membrane potential.


Subject(s)
Calcium Carbonate/chemistry , Nanocapsules/chemistry , Nitroimidazoles/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Death/drug effects , Cell Line , Chagas Disease/drug therapy , Drug Delivery Systems , Epithelial Cells/parasitology , Membrane Potential, Mitochondrial/drug effects , Nanocapsules/toxicity
9.
Sci Rep ; 8(1): 1840, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382901

ABSTRACT

Much of the recent excitement in the cancer immunotherapy approach has been generated by the recognition that immune checkpoint proteins, like the receptor PD-1, can be blocked by antibody-based drugs with profound effects. Promising clinical data have already been released pointing to the efficiency of the drug pembrolizumab to block the PD-1 pathway, triggering the T-lymphocytes to destroy the cancer cells. Thus, a deep understanding of this drug/receptor complex is essential for the improvement of new drugs targeting the protein PD-1. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT), we investigate in silico the binding energy features of the receptor PD-1 in complex with its drug inhibitor. Our computational results give a better understanding of the binding mechanisms, being also an efficient alternative towards the development of antibody-based drugs, pointing to new treatments for cancer therapy.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Immunotherapy/methods , Neoplasms/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
10.
J Phys Chem A ; 120(28): 5752-65, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27409458

ABSTRACT

The role of hydration on the structural, electronic, optical, and vibrational properties of monohydrated (CaCO3·H2O, hexagonal, P31, Z = 9) and hexahydrated (CaCO3·6H2O, monoclinic, C2/c, Z = 4) calcite crystals is assessed with the help of published experimental and theoretical data applying density functional theory within the generalized gradient approximation and a dispersion correction scheme. We show that the presence of water increases the main band gap of monohydrocalcite by 0.4 eV relative to the anhydrous structure, although practically not changing the hexahydrocalcite band gap. The gap type, however, is modified from indirect to direct as one switches from the monohydrated to the hexahydrated crystal. A good agreement was obtained between the simulated vibrational infrared and Raman spectra and the experimental data, with an infrared signature of hexahydrocalcite relative to monohydrocalcite being observed at 837 cm(-1). Other important vibrational signatures of the lattice, water molecules, and CO3(2-) were identified as well. Analysis of the phonon dispersion curves shows that, as the hydration level of calcite increases, the longitudinal optical-transverse optical phonon splitting becomes smaller. The thermodynamics properties of hexahydrocalcite as a function of temperature resemble closely those of calcite, while monohydrocalcite exhibits a very distinct behavior.

11.
Phys Chem Chem Phys ; 17(19): 13092-103, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25915595

ABSTRACT

We employ quantum biochemistry methods based on the Density Functional Theory (DFT) approach to unveil the detailed binding energy features of willardiines co-crystallized with the AMPA receptor. Our computational results demonstrate that the total binding energies of fluorine-willardiine (FW), hydrogen-willardiine (HW), bromine-willardiine (BrW) and iodine-willardiine (IW) to the iGluR2 ligand-pocket correlate with the agonist binding energies, whose experimental sequential data match our computational counterpart, excluding the HW case. We find that the main contributions to the total willardiine-iGluR2 binding energy are due to the amino acid residues in decreasing order Glu705 > Arg485 > Ser654 > Tyr450 > T655. Furthermore, Met708, which is positioned close to the 5-substituent, attracts HW and FW, but repels BrW and IW. Our results contribute significantly to an improved understanding of the willardiine-iGluR2 binding mechanisms.


Subject(s)
Alanine/analogs & derivatives , Drug Partial Agonism , Quantum Theory , Receptors, AMPA/agonists , Uracil/pharmacology , Alanine/metabolism , Alanine/pharmacology , Ligands , Models, Molecular , Protein Conformation , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Thermodynamics , Uracil/metabolism
12.
Molecules ; 19(4): 4145-56, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24699154

ABSTRACT

UV-vis optical absorption spectra of the antitrypanocidal drug benznidazole solvated in water were measured for various concentrations. The spectra show a prominent peak around 3.80 eV, while deconvolution of the UV-vis optical absorption spectra revealed six bands centered at 3.60, 3.83, 4.15, 4.99, 5.60, and 5.76 eV. Benznidazole electronic transitions were obtained after density functional theory (DFT) calculations within the polarized continuum (PCM) model for water solvation. Molecular geometry optimizations were carried out, and the measured absorption peaks were related to specific molecular orbital transitions obtained within the time dependent DFT (TD-DFT) with excellent agreement between theory and experiment.


Subject(s)
Nitroimidazoles/chemistry , Trypanocidal Agents/chemistry , Quantum Theory , Solutions , Spectrophotometry, Ultraviolet , Thermodynamics , Water
13.
Phys Chem Chem Phys ; 14(4): 1389-98, 2012 Jan 28.
Article in English | MEDLINE | ID: mdl-22159045

ABSTRACT

By taking advantage of the crystallographic data of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) complexed with statins, a quantum biochemistry study based on the density functional theory is performed to estimate the interaction energy for each statin when one considers binding pockets of different sizes. Assuming a correlation between statin potency and the strength of the total HMGR-statin binding energy, clinical data as well as IC(50) values of these cholesterol-lowering drugs are successfully explained only after stabilization of the calculated total binding energy for a larger size of the ligand-interacting HGMR region, one with a radius of at least 12.0 Å. Actually, the binding pocket radius suggested by classic works, which was based solely on the interpretation of crystallographic data of the HMGR-statin complex, is smaller than that necessary to achieve total binding energy convergence in our simulations. Atorvastatin and rosuvastatin are shown to be the most strongly bound HMGR inhibitors, while simvastatin and fluvastatin are the weakest ones. A binding site, interaction energy between residues and statin atoms, and residues domain (BIRD) panel is constructed, indicating clear quantum biochemistry-based routes for the development of new statin derivatives.


Subject(s)
Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypercholesterolemia/drug therapy , Binding Sites , Humans , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hypercholesterolemia/enzymology , Models, Molecular , Molecular Dynamics Simulation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...