Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685893

ABSTRACT

Chronic cases of chikungunya fever represent a public health problem in countries where the virus circulates. The disease is prolonged, in some cases, for years, resulting in disabling pain and bone erosion among other bone and joint problems. As time progresses, tissue damage is persistent, although the virus has not been found in blood or joints. The pathogenesis of these conditions has not been fully explained. Additionally, it has been considered that there are multiple factors that might intervene in the viral pathogenesis of the different conditions that develop. Other mechanisms involved in osteoarthritic diseases of non-viral origin could help explain how damage is produced in chronic conditions. The aim of this review is to analyze the molecular and cellular factors that could be involved in the tissue damage generated by different infectious conditions of the chikungunya virus.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , Chikungunya Fever/complications , Pain , Public Health
2.
Antivir Ther ; 28(1): 13596535231155263, 2023 02.
Article in English | MEDLINE | ID: mdl-36724136

ABSTRACT

BACKGROUND: Polyamines are involved in several cellular processes and inhibiting their synthesis affects chikungunya virus (CHIKV) replication and translation, and, therefore, reduces the quantity of infectious viral particles produced. In this study, we evaluated the inhibition of CHIKV replication by N-ω-chloroacetyl-L-ornithine (NCAO), a competitive inhibitor of ornithine decarboxylase, an enzyme which is key in the biosynthesis of polyamines (PAs). METHODS: The cytotoxicity of NCAO was evaluated by MTT in cell culture. The inhibitory effect of CHIKV replication by NCAO was evaluated in Vero and C6/36 cells. The intracellular polyamines were quantified by HPLC in CHIKV-infected cells. We evaluated the yield of CHIKV in titres via the addition of PAs in Vero, C6/36 cells and human fibroblast BJ treated with NCAO. RESULTS: We found that NCAO inhibits the replication of CHIKV in Vero and C6/36 cells in a dose-dependent manner, causing a decrease in the PFU/mL of at least 4 logarithms (p < 0.01) in both cell lines. Viral yields were restored by the addition of exogenous polyamines, mainly putrescine. The HPLC analyses showed that NCAO decreases the content of intracellular PAs, even though it is predominantly spermidines and spermines which are present in infected cells. Inhibition of CHIKV replication was observed in human fibroblast BJ treated with 100 µM NCAO 24 h before and 48 h after the infection at a MOI 1. CONCLUSIONS: NCAO inhibits CHIKV replication by depleting the intracellular polyamines in Vero, C6/36 cells and human fibroblast BJ, suggesting that this compound is a possible antiviral agent for CHIKV.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Chlorocebus aethiops , Humans , Vero Cells , Virus Replication , Fibroblasts , Polyamines/pharmacology
3.
Acta Pharm ; 73(1): 59-74, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36692466

ABSTRACT

Nitric oxide (NO) participates in processes such as endothelium-dependent vasodilation and neurotransmission/neuromodulation. The role of NO in epilepsy is controversial, attributing it to anticonvulsant but also proconvulsant properties. Clarification of this dual effect of NO might lead to the development of new antiepileptic drugs. Previous results in our laboratory indicated that this contradictory role of NO in seizures could depend on the nitric oxide synthase (NOS) isoform involved, which could play opposite roles in epileptogenesis, one of them being proconvulsant but the other anticonvulsant. The effect of convulsant drugs on neuronal NO (nNO) and endothelial NO (eNO) levels was investigated. Considering the distribution of neuronal and endothelial NOS in neurons and astrocytes, resp., primary cultures of neurons and astrocytes were used as a study model. The effects of convulsant drugs pentylenetetrazole, thiosemicarbazide, 4-aminopyridine and bicuculline on NO levels were studied, using a spectrophotometric method. Their effects on NO levels in neurons and astrocytes depend on the concentration and time of treatment. These convulsant drugs caused an increase in nNO, but a decrease in eNO was proportional to the duration of treatment in both cases. Apparently, nNO possesses convulsant properties mediated by its effect on the glutamatergic and GABAergic systems, probably through GABAA receptors. Anticonvulsant properties of eNO may be the consequence of its effect on endothelial vasodilation and its capability to induce angiogenesis. Described effects last as seizures do. Considering the limitations of these kinds of studies and the unexplored influence of inducible NO, further investigations are required.


Subject(s)
Convulsants , Nitric Oxide , Humans , Convulsants/adverse effects , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Nitric Oxide Synthase Type III , Enzyme Inhibitors/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Pentylenetetrazole/pharmacology , Neurons
4.
Int J Mol Sci ; 22(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406808

ABSTRACT

Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl-]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane Vm, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane Vm during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.


Subject(s)
Ion Channels/physiology , Polyamines/pharmacology , Sperm Capacitation/drug effects , Sperm Motility/drug effects , Spermatozoa/physiology , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Ion Channels/drug effects , Male , Membrane Potentials , Mice , Potassium/metabolism , Spermatozoa/drug effects
5.
Viruses ; 12(11)2020 10 29.
Article in English | MEDLINE | ID: mdl-33138336

ABSTRACT

Dengue manifestations range from a mild form, dengue fever (DF), to more severe forms such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The ability of the host to present one of these clinical forms could be related to polymorphisms located in genes of the Toll-like receptors (TLRs) which activate the pro-inflammatory response. Therefore, the genotyping of single nucleotide genetic polymorphisms (SNPs) in TLR3 (rs3775291 and rs6552950), TLR4 (rs2737190, rs10759932, rs4986790, rs4986791, rs11536865, and rs10983755), TLR7 (rs179008 and rs3853839), and TLR8 (rs3764880, rs5741883, rs4830805, and rs1548731) was carried out in non-genetically related DHF patients, DF patients, and general population (GP) subjects. The SNPs were analyzed by real-time PCR by genotyping assays from Applied Biosystems®. The codominance model showed that dengue patients had a lower probability of presenting the TLR4-rs2737190-G/G genotype (odds ratio (OR) (95% CI) = 0.34 (0.14-0.8), p = 0.038). Dengue patients showed a lower probability of presenting TLR4-rs11536865-G/C genotype (OR (95% CI) = 0.19 (0.05-0.73), p = 0.0092) and had a high probability of presenting the TACG haplotype, but lower probability of presenting the TGCG haplotype in the TLR4 compared to GP individuals (OR (95% CI) = 0.55 (0.35-0.86), p = 0.0084). In conclusion, the TLR4-rs2737190-G/G and TLR4-rs11536865-G/C genotypes and TGCG haplotype were associated with protection from dengue.


Subject(s)
Dengue/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Toll-Like Receptor 3/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics , Adult , Aged , Alleles , Case-Control Studies , Dengue/blood , Dengue/epidemiology , Epidemics , Female , Genotype , Haplotypes , Humans , Male , Mexico/epidemiology , Middle Aged
6.
J Ethnopharmacol ; 248: 112321, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31655146

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: In traditional Mexican medicine, Echeveria gibbiflora DC has been used as a vaginal post-coital rinse to prevent pregnancy. The aqueous crude extract (OBACE) induces sperm immobilization/agglutination and a hypotonic-like effect, likely attributed to the high concentration of calcium bis-(hydrogen-1-malate) hexahydrate [Ca2+ (C4H5O5)2•6H2O]. Likewise, OBACE impedes the increase of [Ca2+]i during capacitation. AIM OF THE STUDY: Evaluate the effect of OBACE on sperm energy metabolism and the underlying mechanism of action on sperm-specific channel. MATERIAL AND METHODS: In vitro, we quantified the mouse sperm immobilization effect and the antifertility potential of OBACE. The energetic metabolism status was also evaluated by assessing the ATP levels, general mitochondrial activity, mitochondrial membrane potential, and enzymatic activity of three key enzymes of energy metabolism. Furthermore, the effect of the ion efflux of Cl- and K+, as well as the pHi, were investigated in order to elucidate which channel is suitable to perform an in silico study. RESULTS: Total and progressive motility notably decreased, as did fertility rates. ATP levels, mitochondrial activity and membrane potential were reduced. Furthermore, the activities of the three enzymes decreased. Neither Cl- or K+ channels activities were affected at low concentrations of OBACE; nevertheless, pHi did not alkalinize. Finally, an in silico analysis was performed between the Catsper channel and calcium bis-(hydrogen-1-malate) hexahydrate, which showed a possible blockade of this sperm cation channel. CONCLUSION: The results were useful to elucidate the effect of OBACE and to propose it as a future male contraceptive.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Signaling/drug effects , Contraceptive Agents, Male/pharmacology , Crassulaceae , Energy Metabolism/drug effects , Plant Extracts/pharmacology , Spermatozoa/drug effects , Animals , Binding Sites , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/isolation & purification , Calcium Channels/chemistry , Calcium Channels/metabolism , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/isolation & purification , Crassulaceae/chemistry , Fertility/drug effects , Hydrogen-Ion Concentration , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , Plant Extracts/isolation & purification , Protein Conformation , Sperm Motility/drug effects , Spermatozoa/metabolism , Structure-Activity Relationship
7.
Int J Mol Sci ; 20(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970549

ABSTRACT

Chagas disease (CD), or American trypanosomiasis, causes more than 10,000 deaths per year in the Americas. Current medical therapy for CD has low efficacy in the chronic phase of the disease and serious adverse effects; therefore, it is necessary to search for new pharmacological treatments. In this work, the ZINC15 database was filtered using the N-acylhydrazone moiety and a subsequent structure-based virtual screening was performed using the cruzain enzyme of Trypanosoma cruzi to predict new potential cruzain inhibitors. After a rational selection process, four compounds, Z2 (ZINC9873043), Z3 (ZINC9870651), Z5 (ZINC9715287), and Z6 (ZINC9861447), were chosen to evaluate their in vitro trypanocidal activity and enzyme inhibition. Compound Z5 showed the best trypanocidal activity against epimatigote (IC50 = 36.26 ± 9.9 µM) and trypomastigote (IC50 = 166.21 ± 14.5 µM and 185.1 ± 8.5 µM on NINOA and INC-5 strains, respectively) forms of Trypanosoma cruzi. In addition, Z5 showed a better inhibitory effect on Trypanosoma cruzi proteases than S1 (STK552090, 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]-indol-4-amine), a known cruzain inhibitor. This study encourages the use of computational tools for the rational search for trypanocidal drugs.


Subject(s)
Enzyme Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Databases, Chemical , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Docking Simulation , Protozoan Proteins/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/enzymology
8.
Microbiol Immunol ; 61(10): 433-441, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28881485

ABSTRACT

Heterologous secondary infections are at increased risk of developing dengue hemorrhagic fever (DHF) because of antibody-dependent enhancement (ADE). IgG subclasses can fix and activate complement and bind to Fcɣ receptors. These factors may also play an important role in the development of ADE and thus in the pathogenesis of DHF. The aim of this study was to analyze the indices of anti-dengue IgG subclasses in adult patients with febrile and hemorrhagic dengue in the acute phase. In 2013, 129 patients with dengue fever (DF) and 57 with DHF in Veracruz, Mexico were recruited for this study and anti-dengue IgM and IgG determined by capture ELISA. Anti-dengue IgG subclasses were detected by indirect ELISA. Anti-dengue IgG2 and IgG3 subclasses were detected in patients with dengue. IgG1 increased significantly in the sera of patients with both primary and secondary infections and DHF, but was higher in patients with secondary infections. The IgG4 subclass index was significantly higher in the sera of patients with DHF than in that of those with DF, who were in the early and late acute phase of both primary and secondary infection. In conclusion, indices of subclasses IgG1 and IgG4 were higher in patients with DHF.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/immunology , Immunoglobulin G/blood , Severe Dengue/immunology , Adult , Dengue/virology , Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Female , Humans , Immunoglobulin G/classification , Immunoglobulin M/blood , Immunoglobulin M/pharmacology , Lymphocytes/virology , Male , Mexico , Middle Aged , Monocytes/immunology , Monocytes/virology , Neutrophils/immunology , Neutrophils/virology , RNA, Viral/analysis , Serotyping , Severe Dengue/virology , Severity of Illness Index , Young Adult
9.
Anticancer Drugs ; 27(6): 508-18, 2016 07.
Article in English | MEDLINE | ID: mdl-26918391

ABSTRACT

N-ω-chloroacetyl-L-ornithine (NCAO) is an ornithine decarboxylase (ODC) inhibitor that is known to exert cytotoxic and antiproliferative effects on three neoplastic human cancer cell lines (HeLa, MCF-7, and HepG2). Here, we show that NCAO has antiproliferative activity in 13 cancer cell lines, of diverse tissue origin from human and mice, and in a mouse cancer model in vivo. All cell lines were sensitive to NCAO after 72 h of treatment (the EC50 ranged from 1 to 50.6 µmol/l). The Ca Ski cell line was the most sensitive (EC50=1.18±0.07 µmol/l) and MDA-MB-231 was the least sensitive (EC50=50.6±0.3 µmol/l). This ODC inhibitor showed selectivity for cancer cells, exerting almost no cytotoxic effect on the normal Vero cell line (EC50>1000 µmol/l). NCAO induced apoptosis and inhibited tumor cell migration in vitro. Furthermore, in vivo, this compound (at 50 and 100 mg/kg, daily intraperitoneal injection for 7 days) exerted potent antitumor activity against both solid and ascitic tumors in a mouse model using the myeloma (Ag8) cell line. At these same two doses, the toxicological evaluation showed that NCAO has no obvious systemic toxicity. The current results suggest that the antitumor activity is exerted by apoptosis related not only to a local but also a systemic cytotoxic effect exerted by NCAO on tumor cells. The applications for NCAO as an antitumor agent may be extensive; however, further studies are needed to ascertain the antitumor activity on other types of tumor in vivo and to determine the precise molecular mechanism of its activity.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Neoplasms/drug therapy , Ornithine/analogs & derivatives , Animals , Apoptosis/drug effects , Ascites/pathology , Cell Line, Tumor , Cell Movement/drug effects , Humans , Male , Mice, Inbred BALB C , Neoplasms/pathology , Ornithine/pharmacology , Toxicity Tests, Subchronic , Xenograft Model Antitumor Assays/methods
10.
J Enzyme Inhib Med Chem ; 30(3): 345-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24939101

ABSTRACT

Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Ornithine Decarboxylase Inhibitors/pharmacology , Ornithine Decarboxylase/metabolism , Ornithine/analogs & derivatives , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , HeLa Cells , Hep G2 Cells , Humans , Liver/drug effects , Liver/enzymology , Liver/metabolism , MCF-7 Cells , Male , Molecular Structure , Ornithine/chemical synthesis , Ornithine/chemistry , Ornithine/pharmacology , Ornithine Decarboxylase Inhibitors/chemical synthesis , Ornithine Decarboxylase Inhibitors/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship , Vero Cells
11.
Biochem Biophys Res Commun ; 396(2): 549-54, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20438715

ABSTRACT

Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.


Subject(s)
Chloroquine/pharmacology , Gene Transfer Techniques , Membrane Fusion , Spermidine/pharmacology , Animals , Cell Line , Chloroquine/toxicity , Humans , Mice , Mice, Inbred BALB C , PC12 Cells , Rats , Spermidine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...