Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37836772

ABSTRACT

Antibiotic resistance is a global threat to public health, and the search for new antibacterial therapies is a current research priority. The aim of this in silico study was to test nine new fluoroquinolones previously designed with potential leishmanicidal activity against Campylobacter jejuni, Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Salmonella typhi, all of which are considered by the World Health Organization to resistant pathogens of global concern, through molecular docking and molecular dynamics (MD) simulations using wild-type (WT) and mutant-type (MT) DNA gyrases as biological targets. Our results showed that compound 9FQ had the best binding energy with the active site of E. coli in both molecular docking and molecular dynamics simulations. Compound 9FQ interacted with residues of quinolone resistance-determining region (QRDR) in GyrA and GyrB chains, which are important to enzyme activity and through which it could block DNA replication. In addition to compound 9FQ, compound 1FQ also showed a good affinity for DNA gyrase. Thus, these newly designed molecules could have antibacterial activity against Gram-negative microorganisms. These findings represent a promising starting point for further investigation through in vitro assays, which can validate the hypothesis and potentially facilitate the development of novel antibiotic drugs.


Subject(s)
Fluoroquinolones , Quinolones , Fluoroquinolones/pharmacology , Fluoroquinolones/chemistry , Escherichia coli/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Quinolones/chemistry , DNA Gyrase/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests
2.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36770554

ABSTRACT

Air transports several pollutants, including particulate matter (PM), which can produce cardiovascular and respiratory diseases. Thus, it is a challenge to control pollutant emissions before releasing them to the environment. Until now, filtration has been the most efficient processes for removing PM. Therefore, the electrospinning procedure has been applied to obtain membranes with a high filtration efficiency and low pressure drop. This review addressed the synthesis of polymers that are used for fabricating high-performance membranes by electrospinning to remove air pollutants. Then, the most influential parameters to produce electrospun membranes are indicated. The main results show that electrospun membranes are an excellent alternative to having air filters due to the versatility of the process, the capacity for controlling the fiber diameter, porosity, high filtration efficiency and low-pressure drop.

SELECTION OF CITATIONS
SEARCH DETAIL
...