Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(1): e0244439, 2021.
Article in English | MEDLINE | ID: mdl-33444326

ABSTRACT

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease representing a serious unmet medical need. The disease is associated with the loss of self-tolerance and exaggerated B cell activation, resulting in autoantibody production and the formation of immune complexes that accumulate in the kidney, causing glomerulonephritis. TLR7, an important mediator of the innate immune response, drives the expression of type-1 interferon (IFN), which leads to expression of type-1 IFN induced genes and aggravates lupus pathology. Because the lysosomal peptide symporter slc15a4 is critically required for type-1 interferon production by pDC, and for certain B cell functions in response to TLR7 and TLR9 signals, we considered it as a potential target for pharmacological intervention in SLE. We deleted the slc15a4 gene in C57BL/6, NZB, and NZW mice and found that pristane-challenged slc15a4-/- mice in the C57BL/6 background and lupus prone slc15a4-/- NZB/W F1 mice were both completely protected from lupus like disease. In the NZB/W F1 model, protection persisted even when disease development was accelerated with an adenovirus encoding IFNα, emphasizing a broad role of slc15a4 in disease initiation. Our results establish a non-redundant function of slc15a4 in regulating both innate and adaptive components of the immune response in SLE pathobiology and suggest that it may be an attractive drug target.


Subject(s)
Lupus Erythematosus, Systemic/pathology , Membrane Transport Proteins/metabolism , Animals , Chemokines/metabolism , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Imidazoles/pharmacology , Interferon-alpha/genetics , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/mortality , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred NZB , Mice, Knockout , Survival Rate , Terpenes/pharmacology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism
2.
Methods Mol Biol ; 1874: 273-294, 2019.
Article in English | MEDLINE | ID: mdl-30353520

ABSTRACT

Since the first knockout rat model was generated with zinc-finger nucleases (ZFNs) by Geurt's group in 2009, the demand for making targeted rat models has increased tremendously. The advent of the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) system provides researchers with a more efficient method for producing modified animals, which has since then been developed and applied in rat. Since we established a rat model production system at our facility in 2014, we have consistently generated rat models. Due to differences in physiology and embryology between mouse and rat, species-specific protocols for superovulation conditions, microinjection, and embryo transfer (among others) are required. There are over 100 rat strains, and Sprague Dawley is one of the commonly used outbred strains in biomedical research. In this chapter, we describe in detail a range of topics including donor and recipient preparation, microinjection setup, CRISPR reagent preparation, and oviduct transfer procedures for making rat models in the Sprague Dawley background.


Subject(s)
CRISPR-Cas Systems , Microinjections/methods , Models, Animal , Oviducts/metabolism , Animals , Cell Nucleus/genetics , Cytoplasm/genetics , Embryo Transfer , Female , Gene Editing , Gene Knockout Techniques , Rats , Rats, Sprague-Dawley , Species Specificity , Superovulation
3.
Transgenic Res ; 25(4): 527-31, 2016 08.
Article in English | MEDLINE | ID: mdl-26852382

ABSTRACT

Embryonic stem (ES) cells from a C57BL/6N (B6N) background injected into B6(Cg)-Tyrc-2J/J (B6-albino) recipient blastocysts are commonly used for generating genetically modified mouse models. To understand the influence of the recipient blastocyst strain on germline transmission, BALB/cAnNTac and B6-albino germline transmission rates were compared using the C57BL6/N-derived C2 ES cell line. A total of 92 ES cell clones from 27 constructs were injected. We compared blastocyst yield, birth rate, chimera formation rate, and high-percentage (>50 %) male chimera formation rate. For germline transmission, we analyzed 24 clones from 19 constructs, which generated high-percentage male chimeras from both donor strains. B6-albino hosts resulted in higher mean blastocyst yields per donor than did BALB/c ones (3.6 vs. 2.5). However, BALB/c hosts resulted in a higher birth rate than B6-albino ones (36 vs. 27 %), a higher chimera formation rate (50 vs. 42 %), a higher high-percentage male chimera rate (10 vs. 8 %), and a higher germline transmission rate (65 vs. 49 %), respectively. Our data suggest that BALB/c is a suitable blastocyst host strain for C2 ES cells and has an advantage over the B6-albino strain for receiving the injection of C2 ES cells.


Subject(s)
Blastocyst/physiology , Embryonic Stem Cells , Mice, Inbred BALB C , Mice, Inbred C57BL , Animals , Female , Germ Cells , Male , Mice, Transgenic , Microinjections
SELECTION OF CITATIONS
SEARCH DETAIL
...