Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1282280, 2023.
Article in English | MEDLINE | ID: mdl-38283346

ABSTRACT

Introduction: Glycyrrhizin (GA) and its derivative Enoxolone (18ß), isolated from the Glycyrrhiza glabra plant, are two potential molecules for treating viral diseases. Both demonstrate to regulate immune system with antiviral and anti-inflammatory activities, with the latter mainly due to modulation of inflammatory cytokines. The aim of this clinical trial was to evaluate the safety and efficacy of a nebulized GA/18ß drug for treating COVID-19 patients. Methods: An open label, randomized, placebo-controlled clinical trial was conducted in Mexico City from January-August 2022 (Registration No. PROTAP-CLI-00). Clinical and biochemical parameters were recorded. Blood samples from patients were regularly collected to evaluate interleukins IL-4, IL-2, IL-1b, TNF-α, IL-17A, IL-6, IL-10,IFN-γ, IL-12, IL-8 and TGF-ß1, as well as IgM and IgG against SARS-CoV-2. Two doses of the drug were used - 30/2 mg (dose A) and 90/4 mg (dose B). Results and discussion: Both GA/18ß doses modulated inflammatory response by reducing mainly IL-17A expression, which in turn kept IL-1ß, IL-6, IL-8 and TNF-α interleukins unchanged, indicating significant modulation of key interleukin levels to prevent exacerbation of the immune response in COVID-19 patients. Early on, dose A increased IgM, while dose B induced expression of the antiviral IFN-γ. No severe side effects were seen with either dose, indicating nebulized GA/18ß is a safe treatment that could be used for COVID-19 and potentially other viral infections involving inflammatory response.


Subject(s)
COVID-19 , Glycyrrhetinic Acid , Humans , SARS-CoV-2 , Glycyrrhizic Acid/therapeutic use , Interleukin-17 , Tumor Necrosis Factor-alpha , Interleukin-6 , Interleukin-8 , Antiviral Agents/therapeutic use , Immunoglobulin M
2.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Article in English | MEDLINE | ID: mdl-35394028

ABSTRACT

The best-known plant endophytes include mainly fungi and bacteria, but there are also a few records of microalgae growing endophytically in vascular land plants, some of which belong to the genus Coccomyxa. In this study, we isolated a single-celled photosynthetic microorganism from the arsenic-tolerant shrub Acacia farnesiana, thus we hypothesized that it is an endophytic arsenic-tolerant microalga. The microorganism was identified as belonging to the genus Coccomyxa, and the observation of algal cells within the root tissues strongly suggests its endophytic nature. The alga's tolerance to arsenate (AsV) and its influence on the fitness of A. farnesiana in the presence of AsV were evaluated. Coccomyxa sp. can tolerate up to 2000 µM of AsV for periods shorter than 10 days, however, AsV-tolerance decreased significantly in longer exposure periods. The association with the microalga increased the pigment content in aboveground tissues of A. farnesiana seedlings exposed to AsV for 50 days, without changes in plant growth or arsenic accumulation. This work describes the association, probably endophytic, between an angiosperm and a microalga, confirming the ability of the genus Coccomyxa to form associations with land plants and broadening the known variety of plant endophytes.


Subject(s)
Acacia , Arsenic , Chlorophyta , Fabaceae , Microalgae , Arsenic/toxicity , Endophytes
4.
Int J Phytoremediation ; 18(7): 671-8, 2016.
Article in English | MEDLINE | ID: mdl-26618535

ABSTRACT

Acacia farnesiana is a shrub widely distributed in soils heavily polluted with arsenic in Mexico. However, the mechanisms by which this species tolerates the phytotoxic effects of arsenic are unknown. This study aimed to investigate the tolerance and bioaccumulation of As by A. farnesiana seedlings exposed to high doses of arsenate (AsV) and the role of peroxidases (POX) and glutathione S-transferases (GST) in alleviating As-stress. For that, long-period tests were performed in vitro under different AsV treatments. A. farnesiana showed a remarkable tolerance to AsV, achieving a half-inhibitory concentration (IC50) of about 2.8 mM. Bioaccumulation reached about 940 and 4380 mg As·kg(-1) of dry weight in shoots and roots, respectively, exposed for 60 days to 0.58 mM AsV. Seedlings exposed to such conditions registered a growth delay during the first 15 days, when the fastest As uptake rate (117 mg kg(-1) day(-1)) occurred, coinciding with both the highest rate of lipid peroxidation and the strongest up-regulation of enzyme activities. GST activity showed a strong correlation with the As bioaccumulated, suggesting its role in imparting AsV tolerance. This study demonstrated that besides tolerance to AsV, A. farnesiana bioaccumulates considerable amounts of As, suggesting that it may be useful for phytostabilization purposes.


Subject(s)
Acacia/drug effects , Acacia/metabolism , Arsenates/toxicity , Soil Pollutants/toxicity , Acacia/enzymology , Acacia/genetics , Arsenates/metabolism , Arsenic/metabolism , Arsenic/toxicity , Biodegradation, Environmental , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress , Peroxidases/metabolism , Plant Proteins/metabolism , Seedlings/drug effects , Seedlings/enzymology , Seedlings/growth & development , Seedlings/metabolism , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...