Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 33(10): 2053-2060, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27828110

ABSTRACT

In this work we review and-to some extent-upgrade one of the main theories of light flux through homogeneous isotropic media, namely, the Kubelka-Munk (K-M) theory, and in particular the later expansion made by Kubelka to obtain the reflectance of a specimen when a substrate lies underneath. We have completed this solution by calculating the transverse energy density in the specimen and the transmission of the whole. We show that this last result-compatible with Kubelka's upgrade for layered media-also allows for the calculation of the specimen/substrate absorption split. In order to validate these expressions, the results were reproduced by means of a Monte Carlo simulation working on a layered medium under the same assumptions as the K-M theory. Interestingly, the numerical procedure introduces new capabilities in the model regarding the history of any absorbed or outgoing elemental light beam, such as the recording of its time-of-flight through a given system.

2.
Phys Rev Lett ; 115(18): 187403, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26565496

ABSTRACT

We report unexpected enhancements of the magneto-optical effect in ferromagnetic Permalloy disks of diameter D<400 nm. The effect becomes increasingly pronounced for smaller D, reaching more than a 100% enhancement for D=100 nm samples. By means of experiments and simulations, the origin of this effect is identified as a nanoscale ring-shaped region at the disk edges, in which the magneto-optically induced electric polarization is enhanced. This leads to a modification of the electromagnetic near fields and causes the enhanced magneto-optical excitation, independent from any optical resonance.

3.
Opt Lett ; 39(11): 3142-4, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24875997

ABSTRACT

The influence of the degree of purity of a silicon nanoparticle on its resonances, either electric or magnetic, is assessed by using Mie theory as well as finite-element simulations. In particular, it is shown that the main effect of the increase of absorption due to the pollutants is observed in the magnetic resonances. Concerning Kerker's conditions for the directionality of the scattering [J. Opt. Soc. Am.73, 765 (1983)], it is found that both are strongly shifted when the material's purity is varied. Resistive losses confirm the quenching of magnetic resonances, showing that the region of influence in the magnetic dipole resonance is much larger than in the electric one, although it has been found that losses are not critical for silicon content over 99.50%.

4.
Opt Lett ; 37(23): 5015-7, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23202122

ABSTRACT

The optical properties of metallic nanoparticles (NPs) can be described with analytical models based on fundamental quantum mechanical principles, of which the Drude model constitutes the classical limit. Here, we examine the plasmonic properties of silver and gold nanospheres and dimers, with radii ranging from 10 to 1 nm, extending from the classically described regime to the quantum size regime. We have studied the spectral extinction cross section by using the T-matrix method. The results indicate an increasingly substantial change in NP permittivity as the radius is reduced below 5 nm, showing a clear blueshift and weakening of the plasmon resonances for both silver and gold. As a consequence, we observe a dramatic change in the interaction of dimers, especially in the case of gold, where the introduction of quantum mechanically corrected optical properties quenches the plasmonic resonance and predicts an absence of the expected associated redshift.

5.
Opt Express ; 18(23): 23865-71, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21164731

ABSTRACT

In this research we introduce the formalism of the extension of the discrete dipole approximation to a more general range of tensorial relative permittivity and permeability. Its performance is tested in the domain of applicability of other methods for the case of composite materials (nanoshells). Then, some early results on bianisotropic nanoparticles are presented, to show the potential of the Extended Discrete Dipole Approximation (E-DDA) as a new tool for calculating the interaction of light with bianisotropic scatterers.

SELECTION OF CITATIONS
SEARCH DETAIL
...