Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(4): 2257-2267, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38221778

ABSTRACT

Easy-to-synthesize aminoquinoline (AQ) appended naphthoquinone (NQ)-based colorimetric and ratiometric probe (AQNQ) was successfully synthesized in one step with high yield and low cost, and was utilized to supply an effective solution to critical shortcomings encountered in Cu2+ analysis. The structure of AQNQ and its interaction with Cu2+ forming an unusual AQNQ-Cu complex were enlightened with single-crystal X-ray diffraction analysis and different spectroscopic methods. AQNQ-Cu complex is the first Cu2+ containing dinuclear crystal where the octahedral coordination sphere is fulfilled through the coordination of a NQ oxygen atom. AQNQ exhibited long-term stability (more than 1 month), superior probe ability toward Cu2+ with quite fast response (30 s), high selectivity among many ions, and limit of detection of 12.13 ppb that is significantly below the highest amount of Cu2+ allowed in drinking water established by both WHO and EPA. Ratiometric determination of Cu2+ using AQNQ was performed with high recovery and low RSD values for drinking water, tap water, lake water, cherry, and watermelon samples. Colorimetric on-site determination including smartphone and paper strip applications, IMPLICATION, and INHIBIT logic gate applications were successfully carried out. The reversibility and reusability of the response to Cu2+ ions with the paper strip application were examined for the first time.

2.
Talanta ; 261: 124660, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37207509

ABSTRACT

Detection of bisulfite (HSO3-) in food and beverages has vital importance because the excessive amount leads to ill effects on the human body. Colorimetric and fluorometric chromenylium-cyanine-based chemosensor CyR was synthesized and applied for high selective and sensitive analysis of HSO3- in red wine, rose wine and, granulated sugar with high recovery ranges and very fast response time without any interference from other competitive species. The limits of detection (LOD) for the UV-Vis and fluorescence titrations were found as 11.5 µM and 3.77 µM, respectively. The on-site and very rapid methods based on paper strips and smartphone which depend on the color changes from yellow to green have been successfully developed to analyze HSO3- concentration (10-5-10-1 M for paper strip and 163-1205 µM for smartphone). CyR and the bisulfite-adduct formed in the nucleophilic addition reaction with HSO3- were verified by FT-IR, 1H NMR, and MALDI-TOF results as well as Single-Crystal X-Ray Crystallography for CyR.


Subject(s)
Fluorescent Dyes , Wine , Humans , Fluorescent Dyes/chemistry , Colorimetry/methods , Smartphone , Spectroscopy, Fourier Transform Infrared , Wine/analysis
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122725, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37075687

ABSTRACT

A new near-infrared, spectrophotometric, and colorimetric probe based on a phthalocyanine-containing mercaptoquinoline unit (MQZnPc) has been constructed and utilized for discriminative and highly selective/sensitive detection of Ag+, Cu2+, and Hg2+ ions by using proper masking agents like EDTA, KI, and NaCl. The probe only responds to Ag+, Cu2+, and Hg2+ among the tested ions without any interference. The probe performs quite well (the limit of detection: 160 ppb, 148 ppb, and 276 ppb of Ag+, Cu2+, and Hg2+ions for UV-Vis, and 15 ppb, 37 ppb, and 467 ppb of Ag+, Cu2+, and Hg2+ ions for fluorescence, respectively), and has a fast response time (150 sec, 90 sec, and 90 sec of Ag+, Cu2+, and Hg2+ions for UV-Vis, and 300 sec, 240 sec, and 90 sec Ag+, Cu2+, and Hg2+ions for fluorescence, respectively). The probe also displays a colorimetric feature for UV-Vis and smartphone applications. Based on a single probe, Ag+, Cu2+, and Hg2+ ions which are the main toxic water contaminants could be recognized very quickly and colorimetrically with high recovery values in tap water samples. This study stands out with its unique properties compared to the related studies in the literature.

4.
Talanta ; 259: 124471, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37001401

ABSTRACT

The objective of the study is, for the first time, to construct a new near infrared (NIR) fluorophore, spectrophotometric, colorimetric, ratiometric, and turn-on probe (CSME) based on chromenylium cyanine platform decorated with methionine biomolecule to provide an efficient solution for critical shortcoming to be encountered for analysis of hazardous Hg2+ in environment and living cell. The CSME structure and its interaction with Hg2+ ion were evaluated by NMR, FTIR, MS, UV-Vis and fluorescence methods as well as Density Functional Theory (DFT) calculations. The none fluorescence CSME having spirolactam ring only interacted with Hg2+ in aqueous solution including competing ions. This interaction caused the fluorescence CSME with opened spirolactam form which exhibited spectral and colorimetric changes in the NIR region. The probe based on UV-Vis and fluorescence techniques respond in 90 s, has wide linear ranges (for UV-Vis: 6.29 × 10-8 - 1.86 × 10-4 M; for fluorescence: 9.49 × 10-9 - 1.13 × 10-5 M), and has a lower Limit of Detection (LOD) value (for fluorescence: 4.93 × 10-9 M, 0.99 ng/mL) than the value predicted by the US Environmental Protection Agency (EPA) organization. Hg2+ analysis was performed in drinking and tap water with low Relative Standard Deviation (RSD) values and high recovery. Smartphone and living cell applications were successfully performed for colorimetric sensing Hg2+ in real samples and 3T3 cells, respectively.


Subject(s)
Fluorescent Dyes , Mercury , Mice , Animals , Fluorescent Dyes/chemistry , Methionine , Water/chemistry , Racemethionine , Mercury/analysis
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121484, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-35729029

ABSTRACT

The aim of this work is to construct a new A2B2-type of unsymmetrical and ratiometric phthalocyanine (Pc) based-probe O-A2B2ZnPc to provide an effective solution to critical inadequacy to be experienced for the detection of hazardous Be2+. O-A2B2ZnPc enabling strong absorption and emission in Near-Infrared region (λabs-λem wavelengths of 694-712 nm) showed excellent selectivity and sensitivity toward Be2+ among competitive metal ions by both spectrophotometric and fluorometric methods. The probe with oligomeric Pc form in THF was degraded with the addition of aqueous Be2+ and arranged to J-aggregation form, resulting in a remarkably diminishing in Q-band at 694 nm as well as a new band formation at 746 nm, and a considerably decreasing in fluorescence emission. The probe has superior features for the determination of Be2+ such as high quantum efficiency and photochemical stability, rapid response (1 s), high selectivity and very low Limit of Detection (0.26 ppb and 1.5 ppb) for UV-Vis and fluorescence, respectively which are quite good values according to the permissible amount of Be2+ (4 ppb) in water as specified by World Health Organization. O-A2B2ZnPc can be shown among the best performing probes with its unique properties according to previous studies in the literature. In addition, the geometrical and spectral features of the O-A2B2ZnPc were analyzed in detail by DFT calculations.


Subject(s)
Fluorescent Dyes , Isoindoles , Fluorescent Dyes/chemistry , Indoles , Organometallic Compounds , Spectrometry, Fluorescence/methods , Water/chemistry
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122060, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36395583

ABSTRACT

A new dual-channel probe based on rhodamine B derivative (MSB) was successfully designed, synthesized, characterized by Nuclear Magnetic Resonance (NMR) Spectroscopy, Fourier Transform Infrared Spectrophotometer (FTIR), Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), X-ray Photoelectron Spectroscopy (XPS), and Single Crystal X-rayDiffraction, and the sensing abilities toward Fe3+ cation have been demonstrated and the probe was successfully utilized for fluorescence imaging of Fe3+ in living cells. The probe demonstrated quite fast, sensitive, and selective response to Fe3+ by causing an extreme enhancement in UV-vis and fluorescence spectroscopy techniques in the buffered aqueous media which makes MSB a dual-channel probe. While the color of MSB solution was initially light yellow, it turned pink in the presence of Fe3+, which provided highly selective naked-eye determination among several ions as alkaline, alkaline-earth, and transition metal ions. After that, the probe was easily applied to paper strips and real samples such as drinking waters and supplementary iron tablets for sensing Fe3+ in an aqueous solution. The detection limit (LOD) and the response time of the probe were determined as 4.85x10-9 M and 4 min, respectively, which are quite lower compared with other rhodamine based Fe3+ sensors in the literature. According to Job's plot, 1H NMR titration, MALDI-TOF MS, XPS, and DFT study techniques, the complexation ratio between MSB and Fe3+ was found as 1:1. Moreover, the spectral response was reversible with alternately addition of Fe3+ or Na2EDTA to the MSB solution. In addition, fluorescence imaging in NIH/3T3 mouse fibroblast cells and studies in real samples with a quite high recovery rate exhibited that the probe is qualified for detection of Fe3+ ion with multiple practical usages.


Subject(s)
Optical Imaging , Smartphone , Animals , Mice , Rhodamines , Photoelectron Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Anal Chim Acta ; 1198: 339531, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35190120

ABSTRACT

Anthraquinone functional zinc phthalocyanine sensor platform was utilized for ultra-trace amount of water determination in THF and DMF. Using the fluorometric method, the water content in THF was determined with a LOD of 2.27 × 10-4 M and a response time of 1 s. The sensor is based on the mechanism of aggregation depended on quenching of emission. Although the aggregation is known as an undesirable property in the application of phthalocyanine, this property has been successfully applied in the quantification of water content in THF. By using the shift of the third reduction wave of the sensor, the water content in DMF was measured with a LOD value of 5.64 × 10-7 M. The voltammetric response mechanism is based on the hydrogen bonding depended shifting of the reduction potential of quinone moiety on phthalocyanine. Redox potentials of phthalocyanine are used as a calibrant for accurate quantification of water content in DMF. Water molecules (n and m) and equilibrium constants (K1 and K2) for the formation of hydrogen bonding for the first and third reduction processes were calculated as 1.18 (n), 10.4 (m) and 19.3 (K1), 1.6 × 1011 (K2) M-(m-n), which demonstrated why the third reduction process was chosen to set the calibration plots.


Subject(s)
Dimethylformamide , Water , Anthraquinones , Furans , Isoindoles , Organometallic Compounds , Zinc Compounds
8.
J Hazard Mater ; 410: 124597, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33309140

ABSTRACT

The aim of this work is, for the first time, to develop new inexpensive, easy-to-make and multi-channel receptors, naphthoquinone-aniline/pyrene union ((Nq-An) and (Nq-Pyr)) and their Hg2+ complexes [Hg-(Nq-An)2] and [Hg-(Nq-Pyr)2] to supply an efficient solution to critical deficiencies to be encountered for Hg2+ recognition. This study is based on colorimetric, fluorometric, and voltammetric methods for determination of Hg2+ ions through Hg-C and Hg-N binding mode of the naphthoquinone-aniline/pyrene union in aqueous media. The binding mode of the receptors with Hg2+ cation was confirmed by usual characterization techniques for the synthesized Hg2+-complexes [Hg-(Nq-An)2] / [Hg-(Nq-Pyr)2] and voltammetric, 1H NMR titration experiments as well as Job's method, indicating a 2:1 complex between the receptors and Hg2+ cation. The receptors showed a considerable color switching from orange to pink along with a red-shift of absorption wavelength, and fluorescence enhancement via the Chelation Enhanced Fluorescence effect (CHEF), and distinctive changes on the voltammogram of the electroactive naphthoquinone unit with Hg2+ cation. The experiments indicate that the sensors are highly selective and sensitive toward Hg2+ among the studied metal ions in aqueous media compared with other reported Hg2+ sensors.

9.
Inorg Chem ; 58(1): 909-923, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30576121

ABSTRACT

The unprecedented one-dimensional (1-D) coordination polymer of crown fused zinc phthalocyanine (P-CfZnPc) with an octahedral crystal structure and with intermolecular packing that has superior multichannel sensor ability for Be2+ ion recognition was prepared and characterized by single-crystal X-ray diffraction analysis (XRD) and a wide range of spectroscopic and voltammetric methods. An exceptional feature of the crystal structure of P-CfZnPc is that each zinc ion in the phthalocyanine (Pc) polymer is coordinated by the four isoindole nitrogen atoms and an outer oxygen atom of the Pc molecule. This structure is the first example of an octahedral arrangement in a 1-D polymeric chain for zinc phthalocyanines (ZnPcs) and zinc porphyrins (ZnPs) reached without the presence of a coordinating solvent, which was confirmed by XRD analysis. Interestingly, this (1-D) coordination polymer preserves its conformation in THF (tetrahydrofuran) solution, thereby effectively preventing aggregation. This result was confirmed by the particle size of the molecule (125 nm) using dynamic light scattering (DLS) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectra as well as UV-vis spectroscopy. The sensor has long-term stability (more than 3 months in solution), a very low response time (less than 1 s), and nonaggregating ability, facilitating the accurate determination of ultra-trace amounts of Be2+ (lower than 1 ppb), which is extremely important in terms of human health and environmental protection. The sensor can highly selectively and sensitively bind Be2+ among Li+, Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, Co2+, Hg2+, Ni2+, Pb2+, and Zn2+ ions via Be2+-induced J aggregation of Pc molecules. Such a binding leads to not only a significant decrease in Pc absorption (677 nm) as well as the creation of new absorption (720 nm) but also fluorescence emission quenching (690 nm). Furthermore, the sensor displayed highly selective voltammetric recognition for Be2+ following J aggregation/disaggregation in the second reduction process. The binding mechanism of the sensor and Be2+ ion was also explained on the basis of TD-DFT calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...