Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 33(36): 14379-91, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-24005291

ABSTRACT

Activation of the hypothalamo-pituitary-adrenal (HPA) axis plays a vital role in promoting adaptation during acute stress, but adverse effects of chronic stress may result from overactivity of this system. Recent evidence highlights a subdivision of GABAergic neurons within anterior bed nuclei of the stria terminalis (aBST) that integrates and relays inhibitory influences to HPA-effector neurons in paraventricular hypothalamus during acute stress, notably from medial prefrontal [prelimbic (PL)] and hippocampal [ventral subiculum (vSUB)] cortical fields. Here we localize the site and candidate mechanism of neuroplasticity within upstream regions of this inhibitory network after chronic variable stress (CVS). Rats bearing retrograde tracer injections in aBST underwent CVS for 14 d. Retrogradely labeled and unlabeled neurons in vSUB and PL were selected for intracellular dye filling, followed by three-dimensional imaging and analysis of dendritic arborization and spine morphometry. Whereas PL neurons displayed decreases in dendritic branching and spine density after CVS, aBST-projecting cells showed a selective loss of mature mushroom-shaped spines. In a follow-up experiment, CVS-treated and control rats were exposed to a novel restraint challenge for assay of HPA activation and engagement of aBST-projecting cortical regions. CVS animals showed enhanced HPA output and decreased Fos activation in aBST-projecting PL neurons compared with acutely stressed controls. In contrast, vSUB failed to show any significant differences in structural plasticity or functional activation patterns after CVS. These findings define a mechanism whereby synaptic destabilization in the PL → aBST pathway may dampen its ability to impart inhibitory control over the HPA axis after chronic stress exposure.


Subject(s)
Dendritic Spines/pathology , Hypothalamo-Hypophyseal System/pathology , Pituitary-Adrenal System/pathology , Prefrontal Cortex/pathology , Stress, Physiological , Stress, Psychological/pathology , Animals , Dendritic Spines/classification , Hypothalamo-Hypophyseal System/physiopathology , Male , Neuronal Plasticity , Pituitary-Adrenal System/physiopathology , Rats , Rats, Sprague-Dawley , Stress, Psychological/physiopathology , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...